Write code to create a random data set with a normal distribution and defined standard deviation, sample size, and mean.
response_1 <- rnorm(n=100, mean=15, sd=2)
print(response_1)
## [1] 11.01760 15.25884 16.75108 13.88212 16.00949 14.53086 15.32012 11.36912
## [9] 13.25609 14.51991 15.61695 18.31363 17.35694 11.47915 13.79336 14.26094
## [17] 11.31607 12.06407 14.60900 12.93512 14.47141 15.13637 15.87277 16.43758
## [25] 14.01958 17.42540 17.59827 15.01610 10.88039 16.84261 13.74093 17.42155
## [33] 16.70356 13.10117 13.37835 13.81457 11.68951 16.35571 12.93485 14.21128
## [41] 13.85510 15.90200 17.54457 13.72030 18.07980 16.29072 16.38536 15.80495
## [49] 12.62793 15.74245 16.90564 17.28773 13.59483 15.09798 14.94291 16.24048
## [57] 15.31514 14.15155 13.49273 16.82034 12.29500 13.57116 13.17839 16.95727
## [65] 14.19917 16.39967 14.56490 16.12986 13.71216 19.40819 15.26663 13.21808
## [73] 15.34791 13.88111 13.24430 13.32784 13.87400 16.05533 10.66374 13.05562
## [81] 16.88318 13.40959 11.61819 10.97009 16.52820 17.05616 15.01329 14.05579
## [89] 16.84515 16.93357 15.46534 17.43452 16.16073 16.52942 16.34671 16.20639
## [97] 13.64148 15.77171 15.63396 17.26832
response_2 <- rnorm(n=100, mean=30, sd=7)
print(response_2)
## [1] 27.70484 18.98265 37.45084 33.43044 23.72866 32.83378 43.98396 17.84705
## [9] 20.15170 31.07698 19.30076 28.75047 30.89499 22.31984 12.90549 25.30780
## [17] 39.38616 30.35618 25.86221 31.30689 49.51153 39.81541 34.98767 44.18327
## [25] 35.59839 25.04184 34.21625 28.84211 38.75799 27.87258 31.00498 37.36341
## [33] 25.23753 24.56969 26.37521 22.00833 32.05565 36.14627 36.94547 33.23829
## [41] 34.20439 30.13692 38.59282 37.03880 37.24205 10.20592 40.36208 37.47783
## [49] 28.45729 13.69141 33.90735 24.22633 24.34955 29.68665 26.41140 26.18063
## [57] 43.35531 26.89559 39.51582 24.67460 34.98326 19.79774 31.91116 33.44450
## [65] 30.79373 45.89624 24.53310 30.16625 37.77252 32.53250 27.13661 33.71070
## [73] 33.09366 24.34684 31.06900 13.16852 40.09523 34.66184 29.16648 30.19701
## [81] 26.76464 39.00336 31.25987 29.99113 26.20424 18.29553 18.77111 33.54731
## [89] 36.25773 27.63901 29.66208 36.00703 25.31262 20.01735 35.40165 22.48311
## [97] 38.07769 27.74704 24.43066 19.66016
response <- c(response_1, response_2)
Organize these data into a data frame with the appropriate structure.
my_df_1 <- data.frame (X = "control", Y= response_1)
print(my_df_1)
## X Y
## 1 control 11.01760
## 2 control 15.25884
## 3 control 16.75108
## 4 control 13.88212
## 5 control 16.00949
## 6 control 14.53086
## 7 control 15.32012
## 8 control 11.36912
## 9 control 13.25609
## 10 control 14.51991
## 11 control 15.61695
## 12 control 18.31363
## 13 control 17.35694
## 14 control 11.47915
## 15 control 13.79336
## 16 control 14.26094
## 17 control 11.31607
## 18 control 12.06407
## 19 control 14.60900
## 20 control 12.93512
## 21 control 14.47141
## 22 control 15.13637
## 23 control 15.87277
## 24 control 16.43758
## 25 control 14.01958
## 26 control 17.42540
## 27 control 17.59827
## 28 control 15.01610
## 29 control 10.88039
## 30 control 16.84261
## 31 control 13.74093
## 32 control 17.42155
## 33 control 16.70356
## 34 control 13.10117
## 35 control 13.37835
## 36 control 13.81457
## 37 control 11.68951
## 38 control 16.35571
## 39 control 12.93485
## 40 control 14.21128
## 41 control 13.85510
## 42 control 15.90200
## 43 control 17.54457
## 44 control 13.72030
## 45 control 18.07980
## 46 control 16.29072
## 47 control 16.38536
## 48 control 15.80495
## 49 control 12.62793
## 50 control 15.74245
## 51 control 16.90564
## 52 control 17.28773
## 53 control 13.59483
## 54 control 15.09798
## 55 control 14.94291
## 56 control 16.24048
## 57 control 15.31514
## 58 control 14.15155
## 59 control 13.49273
## 60 control 16.82034
## 61 control 12.29500
## 62 control 13.57116
## 63 control 13.17839
## 64 control 16.95727
## 65 control 14.19917
## 66 control 16.39967
## 67 control 14.56490
## 68 control 16.12986
## 69 control 13.71216
## 70 control 19.40819
## 71 control 15.26663
## 72 control 13.21808
## 73 control 15.34791
## 74 control 13.88111
## 75 control 13.24430
## 76 control 13.32784
## 77 control 13.87400
## 78 control 16.05533
## 79 control 10.66374
## 80 control 13.05562
## 81 control 16.88318
## 82 control 13.40959
## 83 control 11.61819
## 84 control 10.97009
## 85 control 16.52820
## 86 control 17.05616
## 87 control 15.01329
## 88 control 14.05579
## 89 control 16.84515
## 90 control 16.93357
## 91 control 15.46534
## 92 control 17.43452
## 93 control 16.16073
## 94 control 16.52942
## 95 control 16.34671
## 96 control 16.20639
## 97 control 13.64148
## 98 control 15.77171
## 99 control 15.63396
## 100 control 17.26832
my_df_2 <- data.frame(X = "treatment", Y = response_2)
print(my_df_2)
## X Y
## 1 treatment 27.70484
## 2 treatment 18.98265
## 3 treatment 37.45084
## 4 treatment 33.43044
## 5 treatment 23.72866
## 6 treatment 32.83378
## 7 treatment 43.98396
## 8 treatment 17.84705
## 9 treatment 20.15170
## 10 treatment 31.07698
## 11 treatment 19.30076
## 12 treatment 28.75047
## 13 treatment 30.89499
## 14 treatment 22.31984
## 15 treatment 12.90549
## 16 treatment 25.30780
## 17 treatment 39.38616
## 18 treatment 30.35618
## 19 treatment 25.86221
## 20 treatment 31.30689
## 21 treatment 49.51153
## 22 treatment 39.81541
## 23 treatment 34.98767
## 24 treatment 44.18327
## 25 treatment 35.59839
## 26 treatment 25.04184
## 27 treatment 34.21625
## 28 treatment 28.84211
## 29 treatment 38.75799
## 30 treatment 27.87258
## 31 treatment 31.00498
## 32 treatment 37.36341
## 33 treatment 25.23753
## 34 treatment 24.56969
## 35 treatment 26.37521
## 36 treatment 22.00833
## 37 treatment 32.05565
## 38 treatment 36.14627
## 39 treatment 36.94547
## 40 treatment 33.23829
## 41 treatment 34.20439
## 42 treatment 30.13692
## 43 treatment 38.59282
## 44 treatment 37.03880
## 45 treatment 37.24205
## 46 treatment 10.20592
## 47 treatment 40.36208
## 48 treatment 37.47783
## 49 treatment 28.45729
## 50 treatment 13.69141
## 51 treatment 33.90735
## 52 treatment 24.22633
## 53 treatment 24.34955
## 54 treatment 29.68665
## 55 treatment 26.41140
## 56 treatment 26.18063
## 57 treatment 43.35531
## 58 treatment 26.89559
## 59 treatment 39.51582
## 60 treatment 24.67460
## 61 treatment 34.98326
## 62 treatment 19.79774
## 63 treatment 31.91116
## 64 treatment 33.44450
## 65 treatment 30.79373
## 66 treatment 45.89624
## 67 treatment 24.53310
## 68 treatment 30.16625
## 69 treatment 37.77252
## 70 treatment 32.53250
## 71 treatment 27.13661
## 72 treatment 33.71070
## 73 treatment 33.09366
## 74 treatment 24.34684
## 75 treatment 31.06900
## 76 treatment 13.16852
## 77 treatment 40.09523
## 78 treatment 34.66184
## 79 treatment 29.16648
## 80 treatment 30.19701
## 81 treatment 26.76464
## 82 treatment 39.00336
## 83 treatment 31.25987
## 84 treatment 29.99113
## 85 treatment 26.20424
## 86 treatment 18.29553
## 87 treatment 18.77111
## 88 treatment 33.54731
## 89 treatment 36.25773
## 90 treatment 27.63901
## 91 treatment 29.66208
## 92 treatment 36.00703
## 93 treatment 25.31262
## 94 treatment 20.01735
## 95 treatment 35.40165
## 96 treatment 22.48311
## 97 treatment 38.07769
## 98 treatment 27.74704
## 99 treatment 24.43066
## 100 treatment 19.66016
my_df <- rbind(my_df_1, my_df_2)
print(my_df)
## X Y
## 1 control 11.01760
## 2 control 15.25884
## 3 control 16.75108
## 4 control 13.88212
## 5 control 16.00949
## 6 control 14.53086
## 7 control 15.32012
## 8 control 11.36912
## 9 control 13.25609
## 10 control 14.51991
## 11 control 15.61695
## 12 control 18.31363
## 13 control 17.35694
## 14 control 11.47915
## 15 control 13.79336
## 16 control 14.26094
## 17 control 11.31607
## 18 control 12.06407
## 19 control 14.60900
## 20 control 12.93512
## 21 control 14.47141
## 22 control 15.13637
## 23 control 15.87277
## 24 control 16.43758
## 25 control 14.01958
## 26 control 17.42540
## 27 control 17.59827
## 28 control 15.01610
## 29 control 10.88039
## 30 control 16.84261
## 31 control 13.74093
## 32 control 17.42155
## 33 control 16.70356
## 34 control 13.10117
## 35 control 13.37835
## 36 control 13.81457
## 37 control 11.68951
## 38 control 16.35571
## 39 control 12.93485
## 40 control 14.21128
## 41 control 13.85510
## 42 control 15.90200
## 43 control 17.54457
## 44 control 13.72030
## 45 control 18.07980
## 46 control 16.29072
## 47 control 16.38536
## 48 control 15.80495
## 49 control 12.62793
## 50 control 15.74245
## 51 control 16.90564
## 52 control 17.28773
## 53 control 13.59483
## 54 control 15.09798
## 55 control 14.94291
## 56 control 16.24048
## 57 control 15.31514
## 58 control 14.15155
## 59 control 13.49273
## 60 control 16.82034
## 61 control 12.29500
## 62 control 13.57116
## 63 control 13.17839
## 64 control 16.95727
## 65 control 14.19917
## 66 control 16.39967
## 67 control 14.56490
## 68 control 16.12986
## 69 control 13.71216
## 70 control 19.40819
## 71 control 15.26663
## 72 control 13.21808
## 73 control 15.34791
## 74 control 13.88111
## 75 control 13.24430
## 76 control 13.32784
## 77 control 13.87400
## 78 control 16.05533
## 79 control 10.66374
## 80 control 13.05562
## 81 control 16.88318
## 82 control 13.40959
## 83 control 11.61819
## 84 control 10.97009
## 85 control 16.52820
## 86 control 17.05616
## 87 control 15.01329
## 88 control 14.05579
## 89 control 16.84515
## 90 control 16.93357
## 91 control 15.46534
## 92 control 17.43452
## 93 control 16.16073
## 94 control 16.52942
## 95 control 16.34671
## 96 control 16.20639
## 97 control 13.64148
## 98 control 15.77171
## 99 control 15.63396
## 100 control 17.26832
## 101 treatment 27.70484
## 102 treatment 18.98265
## 103 treatment 37.45084
## 104 treatment 33.43044
## 105 treatment 23.72866
## 106 treatment 32.83378
## 107 treatment 43.98396
## 108 treatment 17.84705
## 109 treatment 20.15170
## 110 treatment 31.07698
## 111 treatment 19.30076
## 112 treatment 28.75047
## 113 treatment 30.89499
## 114 treatment 22.31984
## 115 treatment 12.90549
## 116 treatment 25.30780
## 117 treatment 39.38616
## 118 treatment 30.35618
## 119 treatment 25.86221
## 120 treatment 31.30689
## 121 treatment 49.51153
## 122 treatment 39.81541
## 123 treatment 34.98767
## 124 treatment 44.18327
## 125 treatment 35.59839
## 126 treatment 25.04184
## 127 treatment 34.21625
## 128 treatment 28.84211
## 129 treatment 38.75799
## 130 treatment 27.87258
## 131 treatment 31.00498
## 132 treatment 37.36341
## 133 treatment 25.23753
## 134 treatment 24.56969
## 135 treatment 26.37521
## 136 treatment 22.00833
## 137 treatment 32.05565
## 138 treatment 36.14627
## 139 treatment 36.94547
## 140 treatment 33.23829
## 141 treatment 34.20439
## 142 treatment 30.13692
## 143 treatment 38.59282
## 144 treatment 37.03880
## 145 treatment 37.24205
## 146 treatment 10.20592
## 147 treatment 40.36208
## 148 treatment 37.47783
## 149 treatment 28.45729
## 150 treatment 13.69141
## 151 treatment 33.90735
## 152 treatment 24.22633
## 153 treatment 24.34955
## 154 treatment 29.68665
## 155 treatment 26.41140
## 156 treatment 26.18063
## 157 treatment 43.35531
## 158 treatment 26.89559
## 159 treatment 39.51582
## 160 treatment 24.67460
## 161 treatment 34.98326
## 162 treatment 19.79774
## 163 treatment 31.91116
## 164 treatment 33.44450
## 165 treatment 30.79373
## 166 treatment 45.89624
## 167 treatment 24.53310
## 168 treatment 30.16625
## 169 treatment 37.77252
## 170 treatment 32.53250
## 171 treatment 27.13661
## 172 treatment 33.71070
## 173 treatment 33.09366
## 174 treatment 24.34684
## 175 treatment 31.06900
## 176 treatment 13.16852
## 177 treatment 40.09523
## 178 treatment 34.66184
## 179 treatment 29.16648
## 180 treatment 30.19701
## 181 treatment 26.76464
## 182 treatment 39.00336
## 183 treatment 31.25987
## 184 treatment 29.99113
## 185 treatment 26.20424
## 186 treatment 18.29553
## 187 treatment 18.77111
## 188 treatment 33.54731
## 189 treatment 36.25773
## 190 treatment 27.63901
## 191 treatment 29.66208
## 192 treatment 36.00703
## 193 treatment 25.31262
## 194 treatment 20.01735
## 195 treatment 35.40165
## 196 treatment 22.48311
## 197 treatment 38.07769
## 198 treatment 27.74704
## 199 treatment 24.43066
## 200 treatment 19.66016
Analyze and graph the data.
anova_data <- aov(Y ~ X, data = my_df)
summary <- summary(anova_data)
print(summary[[1]]$`Pr(>F)`)
## [1] 9.625196e-48 NA
library(ggplot2)
plot <- ggplot(my_df, aes(X, Y)) + geom_boxplot() + labs(x="Conditions",y="Responses")
print(plot)
For Loop Generation- ADJUSTING SAMPLE SIZE
n <- seq(50, 300, 10)
for (i in 1:length(n)) {
print(n[i])
}
## [1] 50
## [1] 60
## [1] 70
## [1] 80
## [1] 90
## [1] 100
## [1] 110
## [1] 120
## [1] 130
## [1] 140
## [1] 150
## [1] 160
## [1] 170
## [1] 180
## [1] 190
## [1] 200
## [1] 210
## [1] 220
## [1] 230
## [1] 240
## [1] 250
## [1] 260
## [1] 270
## [1] 280
## [1] 290
## [1] 300
response_1 <- rnorm(n=n[i], mean=15, sd=2)
print(response_1)
## [1] 18.491750 13.365523 17.577763 16.308171 18.446129 15.369600 12.009939
## [8] 12.399998 12.460046 9.684322 11.982549 16.825695 15.224225 12.374166
## [15] 18.851311 17.588250 16.994776 17.682614 15.452142 14.546141 15.634124
## [22] 14.791227 13.392061 16.705576 14.200141 16.427065 16.001752 14.358205
## [29] 14.437033 14.835895 15.468808 10.551635 19.699676 17.300900 12.622384
## [36] 14.352102 14.886544 14.862922 14.439690 15.607953 14.801949 14.055555
## [43] 16.978554 15.874423 9.833442 12.548181 11.994679 14.207736 13.324606
## [50] 13.652159 17.562115 12.791910 19.243422 15.679422 15.700338 14.832388
## [57] 13.101367 17.254784 19.505394 13.576683 11.181300 13.834797 16.749343
## [64] 14.893533 12.572075 12.047032 13.705815 13.580682 12.129671 17.052348
## [71] 17.456928 17.724345 12.860627 14.462827 13.316446 13.163413 13.288716
## [78] 18.334143 14.649704 15.846356 13.457010 12.430899 16.001372 15.175526
## [85] 12.115738 14.415899 11.909641 14.030083 16.800006 16.048087 13.745995
## [92] 14.810334 14.699568 11.847547 13.398594 14.771039 14.298093 15.567808
## [99] 14.638857 14.403927 17.342250 11.963846 13.502534 14.319611 12.583716
## [106] 11.851562 15.327790 14.690275 16.941861 15.079829 11.716417 18.153343
## [113] 14.455606 15.026538 14.415887 18.235549 14.876658 19.160480 13.949767
## [120] 19.957473 14.239469 13.747150 14.499720 17.824228 15.653410 15.528151
## [127] 14.819663 16.358885 14.079083 19.361263 14.693843 13.545021 15.789293
## [134] 15.538866 17.295871 12.556347 14.386826 12.954629 12.344768 11.322409
## [141] 14.723919 12.377363 17.844836 14.092059 14.410448 12.920744 16.876617
## [148] 15.457534 11.419097 14.231759 13.152821 12.213621 13.990080 15.018768
## [155] 14.748096 16.448520 12.515708 14.557877 13.727084 17.810311 15.928518
## [162] 13.383324 19.165226 14.952596 16.129652 13.718952 14.358905 14.435683
## [169] 15.514424 17.181029 14.292574 15.614990 13.286236 10.895597 13.731282
## [176] 14.867658 11.476362 10.599855 14.512075 10.781850 15.043805 10.286117
## [183] 12.044058 12.295957 13.707645 12.066180 11.896770 17.991688 14.301350
## [190] 14.128632 11.826709 14.431159 16.446785 14.170085 14.482088 11.065989
## [197] 13.264018 12.642179 17.079356 14.583070 17.406324 13.145037 11.763841
## [204] 16.170819 16.520057 13.815618 16.222344 12.426152 18.053883 15.467667
## [211] 14.250915 14.391377 17.813458 13.608096 15.116440 10.382196 16.241471
## [218] 16.652119 15.910530 14.091791 15.577706 15.931610 15.760236 11.809356
## [225] 15.474319 12.744971 16.264941 12.895486 15.392187 16.540294 16.043798
## [232] 17.217142 12.860768 14.107448 17.327938 18.175377 14.069279 14.264578
## [239] 11.465339 14.302358 17.325561 16.876951 16.534356 15.534988 12.337552
## [246] 14.860217 14.593961 20.358507 15.026796 14.480177 13.728197 16.152120
## [253] 14.297110 14.511449 14.737217 16.649024 17.352831 11.346647 15.185808
## [260] 16.164430 16.208632 13.835324 15.403930 15.169602 15.238840 13.574430
## [267] 12.321223 13.354138 18.982477 15.075652 16.564783 15.403551 9.455889
## [274] 15.013292 18.161051 12.518467 16.924805 15.921055 14.755503 14.518133
## [281] 12.675677 13.598413 13.259915 15.294391 16.151276 13.281792 17.713326
## [288] 15.912588 12.953465 13.923796 14.645795 16.555378 10.945111 17.872502
## [295] 12.889960 12.291973 14.249739 14.247685 14.305424 15.166561
response_2 <- rnorm(n=n[i], mean=30, sd=7)
print(response_2)
## [1] 31.25427 30.65628 24.94004 38.04220 23.06260 16.04794 36.06336 30.25596
## [9] 27.84820 29.35723 26.84736 43.36308 32.62683 27.36236 24.41777 25.04196
## [17] 23.61909 39.74598 12.46253 35.87795 33.23887 22.90789 37.09327 26.67224
## [25] 22.68967 32.91328 30.90484 41.10639 42.36618 32.60560 29.78610 27.43518
## [33] 31.52731 28.86235 35.84405 20.18671 29.69302 30.93883 30.66830 26.15630
## [41] 28.82206 22.47841 21.63050 29.49063 44.98148 37.93928 55.57387 25.64390
## [49] 30.62468 34.03258 28.91488 23.90599 30.07112 31.55473 32.77119 38.12230
## [57] 24.43859 34.55181 32.10747 25.24917 34.96244 29.61367 24.48523 38.36542
## [65] 32.41803 36.45893 16.67968 39.51801 15.84184 34.95792 27.09087 34.83193
## [73] 29.78659 20.81137 30.90832 41.32425 31.86670 42.89018 30.03984 27.66890
## [81] 29.05032 30.38509 28.97761 40.46823 25.12748 34.12734 27.56140 51.55076
## [89] 27.26011 18.92620 25.55136 30.21626 27.68493 42.76723 37.70334 36.99598
## [97] 26.16664 32.82651 36.80875 23.87609 25.16055 24.55122 32.03489 39.48999
## [105] 38.53195 19.87446 28.97125 40.31845 21.97372 34.69004 48.68308 37.25723
## [113] 32.07917 40.14932 30.18231 33.45916 31.53235 33.73636 26.64647 27.27844
## [121] 31.70616 28.68998 36.05218 22.42614 16.59260 31.79312 25.90007 35.46757
## [129] 26.30095 37.10045 23.83648 23.23904 27.71851 27.48665 42.75659 26.89666
## [137] 28.30756 31.59063 34.26427 36.75394 26.49618 31.64618 41.92921 29.57085
## [145] 23.99742 31.11749 28.74114 34.82170 27.98649 37.29219 26.82676 25.24951
## [153] 29.53099 26.10839 31.97582 43.82241 30.10036 32.78075 32.83323 39.74264
## [161] 23.02509 37.63179 37.40694 32.18203 47.98549 25.48505 28.75753 36.76021
## [169] 23.90551 31.43224 25.93454 35.08231 26.75890 24.83982 30.44306 32.85792
## [177] 32.75306 48.42229 32.38806 38.15365 21.75780 37.98206 33.96446 29.03695
## [185] 43.78388 26.18705 34.21730 15.93387 21.48765 39.36378 35.78437 34.80760
## [193] 21.27320 34.33426 19.99632 42.65481 26.02818 17.16457 40.23182 22.37922
## [201] 39.28776 23.62239 27.03466 28.68899 19.37863 25.03472 33.07482 28.39325
## [209] 38.42196 40.94329 17.66798 42.84422 34.36237 29.26405 36.50895 18.81185
## [217] 26.54592 32.59736 32.50772 39.44762 29.95580 24.13114 19.07455 29.08983
## [225] 32.35738 31.29326 31.71366 32.87873 17.32706 33.83783 37.21769 15.60030
## [233] 37.43540 24.93088 32.08404 33.04227 38.52929 26.43892 40.92476 32.36881
## [241] 19.28612 26.87543 35.96389 36.14898 29.45664 27.39675 30.40341 26.31226
## [249] 26.89035 31.83187 35.99251 29.03595 33.48333 27.08166 30.60460 28.19195
## [257] 36.12711 17.55656 31.52946 29.05257 29.62029 22.43283 32.15608 26.14258
## [265] 27.09999 31.34925 36.50043 35.68499 29.60171 40.43587 25.12253 31.68895
## [273] 44.40074 27.85743 33.00843 24.08502 35.99451 23.31180 18.45948 23.22732
## [281] 29.72145 19.44759 16.63197 28.55653 37.48663 20.04608 26.09239 33.76451
## [289] 28.63921 30.08499 19.59507 29.14732 25.45807 22.90767 30.82732 26.93105
## [297] 29.91096 21.23350 20.35953 26.76535
response <- c(response_1, response_2)
my_df_1 <- data.frame (X = "control", Y= response_1)
print(my_df_1)
## X Y
## 1 control 18.491750
## 2 control 13.365523
## 3 control 17.577763
## 4 control 16.308171
## 5 control 18.446129
## 6 control 15.369600
## 7 control 12.009939
## 8 control 12.399998
## 9 control 12.460046
## 10 control 9.684322
## 11 control 11.982549
## 12 control 16.825695
## 13 control 15.224225
## 14 control 12.374166
## 15 control 18.851311
## 16 control 17.588250
## 17 control 16.994776
## 18 control 17.682614
## 19 control 15.452142
## 20 control 14.546141
## 21 control 15.634124
## 22 control 14.791227
## 23 control 13.392061
## 24 control 16.705576
## 25 control 14.200141
## 26 control 16.427065
## 27 control 16.001752
## 28 control 14.358205
## 29 control 14.437033
## 30 control 14.835895
## 31 control 15.468808
## 32 control 10.551635
## 33 control 19.699676
## 34 control 17.300900
## 35 control 12.622384
## 36 control 14.352102
## 37 control 14.886544
## 38 control 14.862922
## 39 control 14.439690
## 40 control 15.607953
## 41 control 14.801949
## 42 control 14.055555
## 43 control 16.978554
## 44 control 15.874423
## 45 control 9.833442
## 46 control 12.548181
## 47 control 11.994679
## 48 control 14.207736
## 49 control 13.324606
## 50 control 13.652159
## 51 control 17.562115
## 52 control 12.791910
## 53 control 19.243422
## 54 control 15.679422
## 55 control 15.700338
## 56 control 14.832388
## 57 control 13.101367
## 58 control 17.254784
## 59 control 19.505394
## 60 control 13.576683
## 61 control 11.181300
## 62 control 13.834797
## 63 control 16.749343
## 64 control 14.893533
## 65 control 12.572075
## 66 control 12.047032
## 67 control 13.705815
## 68 control 13.580682
## 69 control 12.129671
## 70 control 17.052348
## 71 control 17.456928
## 72 control 17.724345
## 73 control 12.860627
## 74 control 14.462827
## 75 control 13.316446
## 76 control 13.163413
## 77 control 13.288716
## 78 control 18.334143
## 79 control 14.649704
## 80 control 15.846356
## 81 control 13.457010
## 82 control 12.430899
## 83 control 16.001372
## 84 control 15.175526
## 85 control 12.115738
## 86 control 14.415899
## 87 control 11.909641
## 88 control 14.030083
## 89 control 16.800006
## 90 control 16.048087
## 91 control 13.745995
## 92 control 14.810334
## 93 control 14.699568
## 94 control 11.847547
## 95 control 13.398594
## 96 control 14.771039
## 97 control 14.298093
## 98 control 15.567808
## 99 control 14.638857
## 100 control 14.403927
## 101 control 17.342250
## 102 control 11.963846
## 103 control 13.502534
## 104 control 14.319611
## 105 control 12.583716
## 106 control 11.851562
## 107 control 15.327790
## 108 control 14.690275
## 109 control 16.941861
## 110 control 15.079829
## 111 control 11.716417
## 112 control 18.153343
## 113 control 14.455606
## 114 control 15.026538
## 115 control 14.415887
## 116 control 18.235549
## 117 control 14.876658
## 118 control 19.160480
## 119 control 13.949767
## 120 control 19.957473
## 121 control 14.239469
## 122 control 13.747150
## 123 control 14.499720
## 124 control 17.824228
## 125 control 15.653410
## 126 control 15.528151
## 127 control 14.819663
## 128 control 16.358885
## 129 control 14.079083
## 130 control 19.361263
## 131 control 14.693843
## 132 control 13.545021
## 133 control 15.789293
## 134 control 15.538866
## 135 control 17.295871
## 136 control 12.556347
## 137 control 14.386826
## 138 control 12.954629
## 139 control 12.344768
## 140 control 11.322409
## 141 control 14.723919
## 142 control 12.377363
## 143 control 17.844836
## 144 control 14.092059
## 145 control 14.410448
## 146 control 12.920744
## 147 control 16.876617
## 148 control 15.457534
## 149 control 11.419097
## 150 control 14.231759
## 151 control 13.152821
## 152 control 12.213621
## 153 control 13.990080
## 154 control 15.018768
## 155 control 14.748096
## 156 control 16.448520
## 157 control 12.515708
## 158 control 14.557877
## 159 control 13.727084
## 160 control 17.810311
## 161 control 15.928518
## 162 control 13.383324
## 163 control 19.165226
## 164 control 14.952596
## 165 control 16.129652
## 166 control 13.718952
## 167 control 14.358905
## 168 control 14.435683
## 169 control 15.514424
## 170 control 17.181029
## 171 control 14.292574
## 172 control 15.614990
## 173 control 13.286236
## 174 control 10.895597
## 175 control 13.731282
## 176 control 14.867658
## 177 control 11.476362
## 178 control 10.599855
## 179 control 14.512075
## 180 control 10.781850
## 181 control 15.043805
## 182 control 10.286117
## 183 control 12.044058
## 184 control 12.295957
## 185 control 13.707645
## 186 control 12.066180
## 187 control 11.896770
## 188 control 17.991688
## 189 control 14.301350
## 190 control 14.128632
## 191 control 11.826709
## 192 control 14.431159
## 193 control 16.446785
## 194 control 14.170085
## 195 control 14.482088
## 196 control 11.065989
## 197 control 13.264018
## 198 control 12.642179
## 199 control 17.079356
## 200 control 14.583070
## 201 control 17.406324
## 202 control 13.145037
## 203 control 11.763841
## 204 control 16.170819
## 205 control 16.520057
## 206 control 13.815618
## 207 control 16.222344
## 208 control 12.426152
## 209 control 18.053883
## 210 control 15.467667
## 211 control 14.250915
## 212 control 14.391377
## 213 control 17.813458
## 214 control 13.608096
## 215 control 15.116440
## 216 control 10.382196
## 217 control 16.241471
## 218 control 16.652119
## 219 control 15.910530
## 220 control 14.091791
## 221 control 15.577706
## 222 control 15.931610
## 223 control 15.760236
## 224 control 11.809356
## 225 control 15.474319
## 226 control 12.744971
## 227 control 16.264941
## 228 control 12.895486
## 229 control 15.392187
## 230 control 16.540294
## 231 control 16.043798
## 232 control 17.217142
## 233 control 12.860768
## 234 control 14.107448
## 235 control 17.327938
## 236 control 18.175377
## 237 control 14.069279
## 238 control 14.264578
## 239 control 11.465339
## 240 control 14.302358
## 241 control 17.325561
## 242 control 16.876951
## 243 control 16.534356
## 244 control 15.534988
## 245 control 12.337552
## 246 control 14.860217
## 247 control 14.593961
## 248 control 20.358507
## 249 control 15.026796
## 250 control 14.480177
## 251 control 13.728197
## 252 control 16.152120
## 253 control 14.297110
## 254 control 14.511449
## 255 control 14.737217
## 256 control 16.649024
## 257 control 17.352831
## 258 control 11.346647
## 259 control 15.185808
## 260 control 16.164430
## 261 control 16.208632
## 262 control 13.835324
## 263 control 15.403930
## 264 control 15.169602
## 265 control 15.238840
## 266 control 13.574430
## 267 control 12.321223
## 268 control 13.354138
## 269 control 18.982477
## 270 control 15.075652
## 271 control 16.564783
## 272 control 15.403551
## 273 control 9.455889
## 274 control 15.013292
## 275 control 18.161051
## 276 control 12.518467
## 277 control 16.924805
## 278 control 15.921055
## 279 control 14.755503
## 280 control 14.518133
## 281 control 12.675677
## 282 control 13.598413
## 283 control 13.259915
## 284 control 15.294391
## 285 control 16.151276
## 286 control 13.281792
## 287 control 17.713326
## 288 control 15.912588
## 289 control 12.953465
## 290 control 13.923796
## 291 control 14.645795
## 292 control 16.555378
## 293 control 10.945111
## 294 control 17.872502
## 295 control 12.889960
## 296 control 12.291973
## 297 control 14.249739
## 298 control 14.247685
## 299 control 14.305424
## 300 control 15.166561
my_df_2 <- data.frame(X = "treatment", Y = response_2)
print(my_df_2)
## X Y
## 1 treatment 31.25427
## 2 treatment 30.65628
## 3 treatment 24.94004
## 4 treatment 38.04220
## 5 treatment 23.06260
## 6 treatment 16.04794
## 7 treatment 36.06336
## 8 treatment 30.25596
## 9 treatment 27.84820
## 10 treatment 29.35723
## 11 treatment 26.84736
## 12 treatment 43.36308
## 13 treatment 32.62683
## 14 treatment 27.36236
## 15 treatment 24.41777
## 16 treatment 25.04196
## 17 treatment 23.61909
## 18 treatment 39.74598
## 19 treatment 12.46253
## 20 treatment 35.87795
## 21 treatment 33.23887
## 22 treatment 22.90789
## 23 treatment 37.09327
## 24 treatment 26.67224
## 25 treatment 22.68967
## 26 treatment 32.91328
## 27 treatment 30.90484
## 28 treatment 41.10639
## 29 treatment 42.36618
## 30 treatment 32.60560
## 31 treatment 29.78610
## 32 treatment 27.43518
## 33 treatment 31.52731
## 34 treatment 28.86235
## 35 treatment 35.84405
## 36 treatment 20.18671
## 37 treatment 29.69302
## 38 treatment 30.93883
## 39 treatment 30.66830
## 40 treatment 26.15630
## 41 treatment 28.82206
## 42 treatment 22.47841
## 43 treatment 21.63050
## 44 treatment 29.49063
## 45 treatment 44.98148
## 46 treatment 37.93928
## 47 treatment 55.57387
## 48 treatment 25.64390
## 49 treatment 30.62468
## 50 treatment 34.03258
## 51 treatment 28.91488
## 52 treatment 23.90599
## 53 treatment 30.07112
## 54 treatment 31.55473
## 55 treatment 32.77119
## 56 treatment 38.12230
## 57 treatment 24.43859
## 58 treatment 34.55181
## 59 treatment 32.10747
## 60 treatment 25.24917
## 61 treatment 34.96244
## 62 treatment 29.61367
## 63 treatment 24.48523
## 64 treatment 38.36542
## 65 treatment 32.41803
## 66 treatment 36.45893
## 67 treatment 16.67968
## 68 treatment 39.51801
## 69 treatment 15.84184
## 70 treatment 34.95792
## 71 treatment 27.09087
## 72 treatment 34.83193
## 73 treatment 29.78659
## 74 treatment 20.81137
## 75 treatment 30.90832
## 76 treatment 41.32425
## 77 treatment 31.86670
## 78 treatment 42.89018
## 79 treatment 30.03984
## 80 treatment 27.66890
## 81 treatment 29.05032
## 82 treatment 30.38509
## 83 treatment 28.97761
## 84 treatment 40.46823
## 85 treatment 25.12748
## 86 treatment 34.12734
## 87 treatment 27.56140
## 88 treatment 51.55076
## 89 treatment 27.26011
## 90 treatment 18.92620
## 91 treatment 25.55136
## 92 treatment 30.21626
## 93 treatment 27.68493
## 94 treatment 42.76723
## 95 treatment 37.70334
## 96 treatment 36.99598
## 97 treatment 26.16664
## 98 treatment 32.82651
## 99 treatment 36.80875
## 100 treatment 23.87609
## 101 treatment 25.16055
## 102 treatment 24.55122
## 103 treatment 32.03489
## 104 treatment 39.48999
## 105 treatment 38.53195
## 106 treatment 19.87446
## 107 treatment 28.97125
## 108 treatment 40.31845
## 109 treatment 21.97372
## 110 treatment 34.69004
## 111 treatment 48.68308
## 112 treatment 37.25723
## 113 treatment 32.07917
## 114 treatment 40.14932
## 115 treatment 30.18231
## 116 treatment 33.45916
## 117 treatment 31.53235
## 118 treatment 33.73636
## 119 treatment 26.64647
## 120 treatment 27.27844
## 121 treatment 31.70616
## 122 treatment 28.68998
## 123 treatment 36.05218
## 124 treatment 22.42614
## 125 treatment 16.59260
## 126 treatment 31.79312
## 127 treatment 25.90007
## 128 treatment 35.46757
## 129 treatment 26.30095
## 130 treatment 37.10045
## 131 treatment 23.83648
## 132 treatment 23.23904
## 133 treatment 27.71851
## 134 treatment 27.48665
## 135 treatment 42.75659
## 136 treatment 26.89666
## 137 treatment 28.30756
## 138 treatment 31.59063
## 139 treatment 34.26427
## 140 treatment 36.75394
## 141 treatment 26.49618
## 142 treatment 31.64618
## 143 treatment 41.92921
## 144 treatment 29.57085
## 145 treatment 23.99742
## 146 treatment 31.11749
## 147 treatment 28.74114
## 148 treatment 34.82170
## 149 treatment 27.98649
## 150 treatment 37.29219
## 151 treatment 26.82676
## 152 treatment 25.24951
## 153 treatment 29.53099
## 154 treatment 26.10839
## 155 treatment 31.97582
## 156 treatment 43.82241
## 157 treatment 30.10036
## 158 treatment 32.78075
## 159 treatment 32.83323
## 160 treatment 39.74264
## 161 treatment 23.02509
## 162 treatment 37.63179
## 163 treatment 37.40694
## 164 treatment 32.18203
## 165 treatment 47.98549
## 166 treatment 25.48505
## 167 treatment 28.75753
## 168 treatment 36.76021
## 169 treatment 23.90551
## 170 treatment 31.43224
## 171 treatment 25.93454
## 172 treatment 35.08231
## 173 treatment 26.75890
## 174 treatment 24.83982
## 175 treatment 30.44306
## 176 treatment 32.85792
## 177 treatment 32.75306
## 178 treatment 48.42229
## 179 treatment 32.38806
## 180 treatment 38.15365
## 181 treatment 21.75780
## 182 treatment 37.98206
## 183 treatment 33.96446
## 184 treatment 29.03695
## 185 treatment 43.78388
## 186 treatment 26.18705
## 187 treatment 34.21730
## 188 treatment 15.93387
## 189 treatment 21.48765
## 190 treatment 39.36378
## 191 treatment 35.78437
## 192 treatment 34.80760
## 193 treatment 21.27320
## 194 treatment 34.33426
## 195 treatment 19.99632
## 196 treatment 42.65481
## 197 treatment 26.02818
## 198 treatment 17.16457
## 199 treatment 40.23182
## 200 treatment 22.37922
## 201 treatment 39.28776
## 202 treatment 23.62239
## 203 treatment 27.03466
## 204 treatment 28.68899
## 205 treatment 19.37863
## 206 treatment 25.03472
## 207 treatment 33.07482
## 208 treatment 28.39325
## 209 treatment 38.42196
## 210 treatment 40.94329
## 211 treatment 17.66798
## 212 treatment 42.84422
## 213 treatment 34.36237
## 214 treatment 29.26405
## 215 treatment 36.50895
## 216 treatment 18.81185
## 217 treatment 26.54592
## 218 treatment 32.59736
## 219 treatment 32.50772
## 220 treatment 39.44762
## 221 treatment 29.95580
## 222 treatment 24.13114
## 223 treatment 19.07455
## 224 treatment 29.08983
## 225 treatment 32.35738
## 226 treatment 31.29326
## 227 treatment 31.71366
## 228 treatment 32.87873
## 229 treatment 17.32706
## 230 treatment 33.83783
## 231 treatment 37.21769
## 232 treatment 15.60030
## 233 treatment 37.43540
## 234 treatment 24.93088
## 235 treatment 32.08404
## 236 treatment 33.04227
## 237 treatment 38.52929
## 238 treatment 26.43892
## 239 treatment 40.92476
## 240 treatment 32.36881
## 241 treatment 19.28612
## 242 treatment 26.87543
## 243 treatment 35.96389
## 244 treatment 36.14898
## 245 treatment 29.45664
## 246 treatment 27.39675
## 247 treatment 30.40341
## 248 treatment 26.31226
## 249 treatment 26.89035
## 250 treatment 31.83187
## 251 treatment 35.99251
## 252 treatment 29.03595
## 253 treatment 33.48333
## 254 treatment 27.08166
## 255 treatment 30.60460
## 256 treatment 28.19195
## 257 treatment 36.12711
## 258 treatment 17.55656
## 259 treatment 31.52946
## 260 treatment 29.05257
## 261 treatment 29.62029
## 262 treatment 22.43283
## 263 treatment 32.15608
## 264 treatment 26.14258
## 265 treatment 27.09999
## 266 treatment 31.34925
## 267 treatment 36.50043
## 268 treatment 35.68499
## 269 treatment 29.60171
## 270 treatment 40.43587
## 271 treatment 25.12253
## 272 treatment 31.68895
## 273 treatment 44.40074
## 274 treatment 27.85743
## 275 treatment 33.00843
## 276 treatment 24.08502
## 277 treatment 35.99451
## 278 treatment 23.31180
## 279 treatment 18.45948
## 280 treatment 23.22732
## 281 treatment 29.72145
## 282 treatment 19.44759
## 283 treatment 16.63197
## 284 treatment 28.55653
## 285 treatment 37.48663
## 286 treatment 20.04608
## 287 treatment 26.09239
## 288 treatment 33.76451
## 289 treatment 28.63921
## 290 treatment 30.08499
## 291 treatment 19.59507
## 292 treatment 29.14732
## 293 treatment 25.45807
## 294 treatment 22.90767
## 295 treatment 30.82732
## 296 treatment 26.93105
## 297 treatment 29.91096
## 298 treatment 21.23350
## 299 treatment 20.35953
## 300 treatment 26.76535
my_df <- rbind(my_df_1, my_df_2)
print(my_df)
## X Y
## 1 control 18.491750
## 2 control 13.365523
## 3 control 17.577763
## 4 control 16.308171
## 5 control 18.446129
## 6 control 15.369600
## 7 control 12.009939
## 8 control 12.399998
## 9 control 12.460046
## 10 control 9.684322
## 11 control 11.982549
## 12 control 16.825695
## 13 control 15.224225
## 14 control 12.374166
## 15 control 18.851311
## 16 control 17.588250
## 17 control 16.994776
## 18 control 17.682614
## 19 control 15.452142
## 20 control 14.546141
## 21 control 15.634124
## 22 control 14.791227
## 23 control 13.392061
## 24 control 16.705576
## 25 control 14.200141
## 26 control 16.427065
## 27 control 16.001752
## 28 control 14.358205
## 29 control 14.437033
## 30 control 14.835895
## 31 control 15.468808
## 32 control 10.551635
## 33 control 19.699676
## 34 control 17.300900
## 35 control 12.622384
## 36 control 14.352102
## 37 control 14.886544
## 38 control 14.862922
## 39 control 14.439690
## 40 control 15.607953
## 41 control 14.801949
## 42 control 14.055555
## 43 control 16.978554
## 44 control 15.874423
## 45 control 9.833442
## 46 control 12.548181
## 47 control 11.994679
## 48 control 14.207736
## 49 control 13.324606
## 50 control 13.652159
## 51 control 17.562115
## 52 control 12.791910
## 53 control 19.243422
## 54 control 15.679422
## 55 control 15.700338
## 56 control 14.832388
## 57 control 13.101367
## 58 control 17.254784
## 59 control 19.505394
## 60 control 13.576683
## 61 control 11.181300
## 62 control 13.834797
## 63 control 16.749343
## 64 control 14.893533
## 65 control 12.572075
## 66 control 12.047032
## 67 control 13.705815
## 68 control 13.580682
## 69 control 12.129671
## 70 control 17.052348
## 71 control 17.456928
## 72 control 17.724345
## 73 control 12.860627
## 74 control 14.462827
## 75 control 13.316446
## 76 control 13.163413
## 77 control 13.288716
## 78 control 18.334143
## 79 control 14.649704
## 80 control 15.846356
## 81 control 13.457010
## 82 control 12.430899
## 83 control 16.001372
## 84 control 15.175526
## 85 control 12.115738
## 86 control 14.415899
## 87 control 11.909641
## 88 control 14.030083
## 89 control 16.800006
## 90 control 16.048087
## 91 control 13.745995
## 92 control 14.810334
## 93 control 14.699568
## 94 control 11.847547
## 95 control 13.398594
## 96 control 14.771039
## 97 control 14.298093
## 98 control 15.567808
## 99 control 14.638857
## 100 control 14.403927
## 101 control 17.342250
## 102 control 11.963846
## 103 control 13.502534
## 104 control 14.319611
## 105 control 12.583716
## 106 control 11.851562
## 107 control 15.327790
## 108 control 14.690275
## 109 control 16.941861
## 110 control 15.079829
## 111 control 11.716417
## 112 control 18.153343
## 113 control 14.455606
## 114 control 15.026538
## 115 control 14.415887
## 116 control 18.235549
## 117 control 14.876658
## 118 control 19.160480
## 119 control 13.949767
## 120 control 19.957473
## 121 control 14.239469
## 122 control 13.747150
## 123 control 14.499720
## 124 control 17.824228
## 125 control 15.653410
## 126 control 15.528151
## 127 control 14.819663
## 128 control 16.358885
## 129 control 14.079083
## 130 control 19.361263
## 131 control 14.693843
## 132 control 13.545021
## 133 control 15.789293
## 134 control 15.538866
## 135 control 17.295871
## 136 control 12.556347
## 137 control 14.386826
## 138 control 12.954629
## 139 control 12.344768
## 140 control 11.322409
## 141 control 14.723919
## 142 control 12.377363
## 143 control 17.844836
## 144 control 14.092059
## 145 control 14.410448
## 146 control 12.920744
## 147 control 16.876617
## 148 control 15.457534
## 149 control 11.419097
## 150 control 14.231759
## 151 control 13.152821
## 152 control 12.213621
## 153 control 13.990080
## 154 control 15.018768
## 155 control 14.748096
## 156 control 16.448520
## 157 control 12.515708
## 158 control 14.557877
## 159 control 13.727084
## 160 control 17.810311
## 161 control 15.928518
## 162 control 13.383324
## 163 control 19.165226
## 164 control 14.952596
## 165 control 16.129652
## 166 control 13.718952
## 167 control 14.358905
## 168 control 14.435683
## 169 control 15.514424
## 170 control 17.181029
## 171 control 14.292574
## 172 control 15.614990
## 173 control 13.286236
## 174 control 10.895597
## 175 control 13.731282
## 176 control 14.867658
## 177 control 11.476362
## 178 control 10.599855
## 179 control 14.512075
## 180 control 10.781850
## 181 control 15.043805
## 182 control 10.286117
## 183 control 12.044058
## 184 control 12.295957
## 185 control 13.707645
## 186 control 12.066180
## 187 control 11.896770
## 188 control 17.991688
## 189 control 14.301350
## 190 control 14.128632
## 191 control 11.826709
## 192 control 14.431159
## 193 control 16.446785
## 194 control 14.170085
## 195 control 14.482088
## 196 control 11.065989
## 197 control 13.264018
## 198 control 12.642179
## 199 control 17.079356
## 200 control 14.583070
## 201 control 17.406324
## 202 control 13.145037
## 203 control 11.763841
## 204 control 16.170819
## 205 control 16.520057
## 206 control 13.815618
## 207 control 16.222344
## 208 control 12.426152
## 209 control 18.053883
## 210 control 15.467667
## 211 control 14.250915
## 212 control 14.391377
## 213 control 17.813458
## 214 control 13.608096
## 215 control 15.116440
## 216 control 10.382196
## 217 control 16.241471
## 218 control 16.652119
## 219 control 15.910530
## 220 control 14.091791
## 221 control 15.577706
## 222 control 15.931610
## 223 control 15.760236
## 224 control 11.809356
## 225 control 15.474319
## 226 control 12.744971
## 227 control 16.264941
## 228 control 12.895486
## 229 control 15.392187
## 230 control 16.540294
## 231 control 16.043798
## 232 control 17.217142
## 233 control 12.860768
## 234 control 14.107448
## 235 control 17.327938
## 236 control 18.175377
## 237 control 14.069279
## 238 control 14.264578
## 239 control 11.465339
## 240 control 14.302358
## 241 control 17.325561
## 242 control 16.876951
## 243 control 16.534356
## 244 control 15.534988
## 245 control 12.337552
## 246 control 14.860217
## 247 control 14.593961
## 248 control 20.358507
## 249 control 15.026796
## 250 control 14.480177
## 251 control 13.728197
## 252 control 16.152120
## 253 control 14.297110
## 254 control 14.511449
## 255 control 14.737217
## 256 control 16.649024
## 257 control 17.352831
## 258 control 11.346647
## 259 control 15.185808
## 260 control 16.164430
## 261 control 16.208632
## 262 control 13.835324
## 263 control 15.403930
## 264 control 15.169602
## 265 control 15.238840
## 266 control 13.574430
## 267 control 12.321223
## 268 control 13.354138
## 269 control 18.982477
## 270 control 15.075652
## 271 control 16.564783
## 272 control 15.403551
## 273 control 9.455889
## 274 control 15.013292
## 275 control 18.161051
## 276 control 12.518467
## 277 control 16.924805
## 278 control 15.921055
## 279 control 14.755503
## 280 control 14.518133
## 281 control 12.675677
## 282 control 13.598413
## 283 control 13.259915
## 284 control 15.294391
## 285 control 16.151276
## 286 control 13.281792
## 287 control 17.713326
## 288 control 15.912588
## 289 control 12.953465
## 290 control 13.923796
## 291 control 14.645795
## 292 control 16.555378
## 293 control 10.945111
## 294 control 17.872502
## 295 control 12.889960
## 296 control 12.291973
## 297 control 14.249739
## 298 control 14.247685
## 299 control 14.305424
## 300 control 15.166561
## 301 treatment 31.254273
## 302 treatment 30.656284
## 303 treatment 24.940043
## 304 treatment 38.042203
## 305 treatment 23.062598
## 306 treatment 16.047938
## 307 treatment 36.063361
## 308 treatment 30.255956
## 309 treatment 27.848198
## 310 treatment 29.357229
## 311 treatment 26.847360
## 312 treatment 43.363080
## 313 treatment 32.626833
## 314 treatment 27.362360
## 315 treatment 24.417765
## 316 treatment 25.041956
## 317 treatment 23.619094
## 318 treatment 39.745984
## 319 treatment 12.462532
## 320 treatment 35.877950
## 321 treatment 33.238872
## 322 treatment 22.907885
## 323 treatment 37.093269
## 324 treatment 26.672244
## 325 treatment 22.689674
## 326 treatment 32.913276
## 327 treatment 30.904839
## 328 treatment 41.106387
## 329 treatment 42.366176
## 330 treatment 32.605598
## 331 treatment 29.786102
## 332 treatment 27.435180
## 333 treatment 31.527313
## 334 treatment 28.862354
## 335 treatment 35.844046
## 336 treatment 20.186706
## 337 treatment 29.693019
## 338 treatment 30.938826
## 339 treatment 30.668303
## 340 treatment 26.156298
## 341 treatment 28.822062
## 342 treatment 22.478413
## 343 treatment 21.630497
## 344 treatment 29.490633
## 345 treatment 44.981485
## 346 treatment 37.939275
## 347 treatment 55.573868
## 348 treatment 25.643896
## 349 treatment 30.624677
## 350 treatment 34.032582
## 351 treatment 28.914880
## 352 treatment 23.905992
## 353 treatment 30.071120
## 354 treatment 31.554730
## 355 treatment 32.771191
## 356 treatment 38.122298
## 357 treatment 24.438591
## 358 treatment 34.551811
## 359 treatment 32.107470
## 360 treatment 25.249168
## 361 treatment 34.962440
## 362 treatment 29.613666
## 363 treatment 24.485227
## 364 treatment 38.365423
## 365 treatment 32.418029
## 366 treatment 36.458925
## 367 treatment 16.679676
## 368 treatment 39.518013
## 369 treatment 15.841841
## 370 treatment 34.957921
## 371 treatment 27.090870
## 372 treatment 34.831927
## 373 treatment 29.786589
## 374 treatment 20.811370
## 375 treatment 30.908322
## 376 treatment 41.324255
## 377 treatment 31.866702
## 378 treatment 42.890181
## 379 treatment 30.039842
## 380 treatment 27.668898
## 381 treatment 29.050319
## 382 treatment 30.385091
## 383 treatment 28.977612
## 384 treatment 40.468232
## 385 treatment 25.127483
## 386 treatment 34.127337
## 387 treatment 27.561396
## 388 treatment 51.550755
## 389 treatment 27.260110
## 390 treatment 18.926205
## 391 treatment 25.551361
## 392 treatment 30.216262
## 393 treatment 27.684928
## 394 treatment 42.767227
## 395 treatment 37.703336
## 396 treatment 36.995975
## 397 treatment 26.166643
## 398 treatment 32.826514
## 399 treatment 36.808753
## 400 treatment 23.876088
## 401 treatment 25.160553
## 402 treatment 24.551221
## 403 treatment 32.034893
## 404 treatment 39.489994
## 405 treatment 38.531947
## 406 treatment 19.874463
## 407 treatment 28.971248
## 408 treatment 40.318451
## 409 treatment 21.973723
## 410 treatment 34.690041
## 411 treatment 48.683081
## 412 treatment 37.257228
## 413 treatment 32.079167
## 414 treatment 40.149321
## 415 treatment 30.182307
## 416 treatment 33.459159
## 417 treatment 31.532347
## 418 treatment 33.736364
## 419 treatment 26.646468
## 420 treatment 27.278436
## 421 treatment 31.706157
## 422 treatment 28.689976
## 423 treatment 36.052183
## 424 treatment 22.426136
## 425 treatment 16.592597
## 426 treatment 31.793119
## 427 treatment 25.900071
## 428 treatment 35.467571
## 429 treatment 26.300951
## 430 treatment 37.100450
## 431 treatment 23.836484
## 432 treatment 23.239039
## 433 treatment 27.718508
## 434 treatment 27.486652
## 435 treatment 42.756587
## 436 treatment 26.896658
## 437 treatment 28.307564
## 438 treatment 31.590633
## 439 treatment 34.264267
## 440 treatment 36.753938
## 441 treatment 26.496185
## 442 treatment 31.646184
## 443 treatment 41.929214
## 444 treatment 29.570846
## 445 treatment 23.997419
## 446 treatment 31.117489
## 447 treatment 28.741140
## 448 treatment 34.821702
## 449 treatment 27.986495
## 450 treatment 37.292191
## 451 treatment 26.826764
## 452 treatment 25.249506
## 453 treatment 29.530987
## 454 treatment 26.108392
## 455 treatment 31.975819
## 456 treatment 43.822407
## 457 treatment 30.100361
## 458 treatment 32.780747
## 459 treatment 32.833234
## 460 treatment 39.742642
## 461 treatment 23.025090
## 462 treatment 37.631786
## 463 treatment 37.406937
## 464 treatment 32.182031
## 465 treatment 47.985491
## 466 treatment 25.485051
## 467 treatment 28.757529
## 468 treatment 36.760210
## 469 treatment 23.905511
## 470 treatment 31.432238
## 471 treatment 25.934537
## 472 treatment 35.082309
## 473 treatment 26.758900
## 474 treatment 24.839824
## 475 treatment 30.443063
## 476 treatment 32.857917
## 477 treatment 32.753059
## 478 treatment 48.422287
## 479 treatment 32.388064
## 480 treatment 38.153653
## 481 treatment 21.757796
## 482 treatment 37.982063
## 483 treatment 33.964460
## 484 treatment 29.036947
## 485 treatment 43.783884
## 486 treatment 26.187045
## 487 treatment 34.217304
## 488 treatment 15.933873
## 489 treatment 21.487655
## 490 treatment 39.363782
## 491 treatment 35.784370
## 492 treatment 34.807596
## 493 treatment 21.273203
## 494 treatment 34.334260
## 495 treatment 19.996316
## 496 treatment 42.654813
## 497 treatment 26.028185
## 498 treatment 17.164574
## 499 treatment 40.231816
## 500 treatment 22.379225
## 501 treatment 39.287760
## 502 treatment 23.622385
## 503 treatment 27.034657
## 504 treatment 28.688988
## 505 treatment 19.378632
## 506 treatment 25.034718
## 507 treatment 33.074824
## 508 treatment 28.393251
## 509 treatment 38.421957
## 510 treatment 40.943288
## 511 treatment 17.667978
## 512 treatment 42.844224
## 513 treatment 34.362367
## 514 treatment 29.264047
## 515 treatment 36.508951
## 516 treatment 18.811851
## 517 treatment 26.545925
## 518 treatment 32.597356
## 519 treatment 32.507717
## 520 treatment 39.447618
## 521 treatment 29.955802
## 522 treatment 24.131137
## 523 treatment 19.074555
## 524 treatment 29.089832
## 525 treatment 32.357379
## 526 treatment 31.293259
## 527 treatment 31.713656
## 528 treatment 32.878733
## 529 treatment 17.327062
## 530 treatment 33.837831
## 531 treatment 37.217685
## 532 treatment 15.600298
## 533 treatment 37.435398
## 534 treatment 24.930881
## 535 treatment 32.084037
## 536 treatment 33.042272
## 537 treatment 38.529295
## 538 treatment 26.438917
## 539 treatment 40.924758
## 540 treatment 32.368814
## 541 treatment 19.286116
## 542 treatment 26.875427
## 543 treatment 35.963886
## 544 treatment 36.148978
## 545 treatment 29.456636
## 546 treatment 27.396750
## 547 treatment 30.403409
## 548 treatment 26.312257
## 549 treatment 26.890353
## 550 treatment 31.831871
## 551 treatment 35.992508
## 552 treatment 29.035946
## 553 treatment 33.483333
## 554 treatment 27.081661
## 555 treatment 30.604603
## 556 treatment 28.191954
## 557 treatment 36.127114
## 558 treatment 17.556561
## 559 treatment 31.529456
## 560 treatment 29.052572
## 561 treatment 29.620289
## 562 treatment 22.432831
## 563 treatment 32.156085
## 564 treatment 26.142578
## 565 treatment 27.099995
## 566 treatment 31.349249
## 567 treatment 36.500434
## 568 treatment 35.684990
## 569 treatment 29.601706
## 570 treatment 40.435870
## 571 treatment 25.122529
## 572 treatment 31.688948
## 573 treatment 44.400740
## 574 treatment 27.857425
## 575 treatment 33.008427
## 576 treatment 24.085017
## 577 treatment 35.994515
## 578 treatment 23.311803
## 579 treatment 18.459481
## 580 treatment 23.227321
## 581 treatment 29.721452
## 582 treatment 19.447590
## 583 treatment 16.631970
## 584 treatment 28.556530
## 585 treatment 37.486625
## 586 treatment 20.046078
## 587 treatment 26.092394
## 588 treatment 33.764509
## 589 treatment 28.639213
## 590 treatment 30.084992
## 591 treatment 19.595074
## 592 treatment 29.147320
## 593 treatment 25.458066
## 594 treatment 22.907672
## 595 treatment 30.827315
## 596 treatment 26.931047
## 597 treatment 29.910957
## 598 treatment 21.233501
## 599 treatment 20.359532
## 600 treatment 26.765350
anova_data <- aov(Y ~ X, data = my_df)
summary_sample <- summary(anova_data)
print(summary_sample[[1]]$`Pr(>F)`)
## [1] 9.503998e-160 NA
library(ggplot2)
plot <- ggplot(my_df, aes(X, Y)) + geom_boxplot() + labs(x="Conditions",y="Responses")
print(plot)
For Loop Generation- ADJUSTING MEAN
n <- sample(1:30)
for (i in 1:length(n)) {
print(n[i])
}
## [1] 8
## [1] 18
## [1] 30
## [1] 15
## [1] 27
## [1] 19
## [1] 5
## [1] 21
## [1] 24
## [1] 14
## [1] 2
## [1] 22
## [1] 1
## [1] 20
## [1] 7
## [1] 25
## [1] 16
## [1] 10
## [1] 3
## [1] 11
## [1] 26
## [1] 6
## [1] 29
## [1] 12
## [1] 13
## [1] 23
## [1] 28
## [1] 4
## [1] 17
## [1] 9
response_1 <- rnorm(n=100, mean=n[i], sd=2)
print(response_1)
## [1] 8.015487 10.506852 10.656271 11.300715 7.854126 7.542025 6.742341
## [8] 6.052166 10.857331 7.849873 9.969840 8.944513 6.096920 9.515185
## [15] 8.680432 9.454713 7.886132 8.722194 11.928263 11.350232 9.219012
## [22] 8.919871 10.449738 8.427970 9.266690 10.575933 8.643854 9.646852
## [29] 11.205830 8.383070 12.143350 8.940458 8.415517 11.475469 5.146079
## [36] 7.206899 11.754997 7.936143 6.217053 9.518454 7.686746 10.165926
## [43] 9.999403 5.664985 10.800236 12.022564 8.414089 8.547306 8.936628
## [50] 7.111503 9.577457 7.826908 4.873718 12.492091 10.159108 10.197141
## [57] 9.133942 10.855095 9.697577 9.475726 6.706163 9.742348 9.253161
## [64] 8.997826 7.265233 8.293879 6.952748 8.197688 13.281874 5.604212
## [71] 7.128089 8.944300 4.234635 10.152622 8.131967 10.623410 7.472462
## [78] 9.229160 11.900315 9.567926 9.010684 8.323030 10.197630 9.412032
## [85] 11.883707 8.350319 6.308467 5.689143 9.207474 10.056146 9.952823
## [92] 11.298488 8.990799 5.785744 7.326567 10.548024 11.350473 5.721737
## [99] 8.102656 7.392347
response_2 <- rnorm(n=100, mean=n[i], sd=7)
print(response_2)
## [1] 15.06553237 12.55207082 2.66834493 2.89383580 22.84157998 15.73650068
## [7] 3.42260283 4.59607697 11.65627228 14.36190035 11.36870220 4.08817340
## [13] 3.24622842 -7.84706781 9.32661802 14.68893960 16.30155998 16.44571800
## [19] 13.99474645 0.90078046 -0.38212405 14.16610967 -3.32316270 5.90530229
## [25] -5.84003081 6.63039357 3.83546700 11.04188461 17.06773425 6.91789035
## [31] 11.84958086 -3.67064259 26.20414124 5.59224184 -0.53038046 8.73393973
## [37] 12.55368501 6.77439800 15.00433418 10.91881429 3.46672229 9.00650344
## [43] -0.89030922 12.65637810 24.27719855 18.30161982 15.68443755 5.65876042
## [49] 15.26692106 3.18694043 16.36698932 0.09582949 12.13693278 3.49710443
## [55] 15.49131423 3.64790119 10.48679375 5.38800802 -1.17545751 10.47391509
## [61] 9.05987335 0.23914391 21.43217680 4.26860701 5.17805883 5.22321366
## [67] 14.99477207 1.26855508 25.17807692 17.42745018 8.39423765 6.55804896
## [73] 5.18016860 6.30796178 3.37572642 12.69773748 8.66974257 15.67958362
## [79] 12.58921759 1.47324922 3.21327795 -2.61820314 16.92743481 7.90379938
## [85] 4.55179090 17.99270635 17.28759585 -2.57690003 10.40353334 16.00736541
## [91] 12.19158301 3.13675002 7.84084818 -8.94834498 -2.22412429 17.19128228
## [97] 5.81780404 17.99684640 8.65946007 4.22792062
response <- c(response_1, response_2)
my_df_1 <- data.frame (X = "control", Y= response_1)
print(my_df_1)
## X Y
## 1 control 8.015487
## 2 control 10.506852
## 3 control 10.656271
## 4 control 11.300715
## 5 control 7.854126
## 6 control 7.542025
## 7 control 6.742341
## 8 control 6.052166
## 9 control 10.857331
## 10 control 7.849873
## 11 control 9.969840
## 12 control 8.944513
## 13 control 6.096920
## 14 control 9.515185
## 15 control 8.680432
## 16 control 9.454713
## 17 control 7.886132
## 18 control 8.722194
## 19 control 11.928263
## 20 control 11.350232
## 21 control 9.219012
## 22 control 8.919871
## 23 control 10.449738
## 24 control 8.427970
## 25 control 9.266690
## 26 control 10.575933
## 27 control 8.643854
## 28 control 9.646852
## 29 control 11.205830
## 30 control 8.383070
## 31 control 12.143350
## 32 control 8.940458
## 33 control 8.415517
## 34 control 11.475469
## 35 control 5.146079
## 36 control 7.206899
## 37 control 11.754997
## 38 control 7.936143
## 39 control 6.217053
## 40 control 9.518454
## 41 control 7.686746
## 42 control 10.165926
## 43 control 9.999403
## 44 control 5.664985
## 45 control 10.800236
## 46 control 12.022564
## 47 control 8.414089
## 48 control 8.547306
## 49 control 8.936628
## 50 control 7.111503
## 51 control 9.577457
## 52 control 7.826908
## 53 control 4.873718
## 54 control 12.492091
## 55 control 10.159108
## 56 control 10.197141
## 57 control 9.133942
## 58 control 10.855095
## 59 control 9.697577
## 60 control 9.475726
## 61 control 6.706163
## 62 control 9.742348
## 63 control 9.253161
## 64 control 8.997826
## 65 control 7.265233
## 66 control 8.293879
## 67 control 6.952748
## 68 control 8.197688
## 69 control 13.281874
## 70 control 5.604212
## 71 control 7.128089
## 72 control 8.944300
## 73 control 4.234635
## 74 control 10.152622
## 75 control 8.131967
## 76 control 10.623410
## 77 control 7.472462
## 78 control 9.229160
## 79 control 11.900315
## 80 control 9.567926
## 81 control 9.010684
## 82 control 8.323030
## 83 control 10.197630
## 84 control 9.412032
## 85 control 11.883707
## 86 control 8.350319
## 87 control 6.308467
## 88 control 5.689143
## 89 control 9.207474
## 90 control 10.056146
## 91 control 9.952823
## 92 control 11.298488
## 93 control 8.990799
## 94 control 5.785744
## 95 control 7.326567
## 96 control 10.548024
## 97 control 11.350473
## 98 control 5.721737
## 99 control 8.102656
## 100 control 7.392347
my_df_2 <- data.frame(X = "treatment", Y = response_2)
print(my_df_2)
## X Y
## 1 treatment 15.06553237
## 2 treatment 12.55207082
## 3 treatment 2.66834493
## 4 treatment 2.89383580
## 5 treatment 22.84157998
## 6 treatment 15.73650068
## 7 treatment 3.42260283
## 8 treatment 4.59607697
## 9 treatment 11.65627228
## 10 treatment 14.36190035
## 11 treatment 11.36870220
## 12 treatment 4.08817340
## 13 treatment 3.24622842
## 14 treatment -7.84706781
## 15 treatment 9.32661802
## 16 treatment 14.68893960
## 17 treatment 16.30155998
## 18 treatment 16.44571800
## 19 treatment 13.99474645
## 20 treatment 0.90078046
## 21 treatment -0.38212405
## 22 treatment 14.16610967
## 23 treatment -3.32316270
## 24 treatment 5.90530229
## 25 treatment -5.84003081
## 26 treatment 6.63039357
## 27 treatment 3.83546700
## 28 treatment 11.04188461
## 29 treatment 17.06773425
## 30 treatment 6.91789035
## 31 treatment 11.84958086
## 32 treatment -3.67064259
## 33 treatment 26.20414124
## 34 treatment 5.59224184
## 35 treatment -0.53038046
## 36 treatment 8.73393973
## 37 treatment 12.55368501
## 38 treatment 6.77439800
## 39 treatment 15.00433418
## 40 treatment 10.91881429
## 41 treatment 3.46672229
## 42 treatment 9.00650344
## 43 treatment -0.89030922
## 44 treatment 12.65637810
## 45 treatment 24.27719855
## 46 treatment 18.30161982
## 47 treatment 15.68443755
## 48 treatment 5.65876042
## 49 treatment 15.26692106
## 50 treatment 3.18694043
## 51 treatment 16.36698932
## 52 treatment 0.09582949
## 53 treatment 12.13693278
## 54 treatment 3.49710443
## 55 treatment 15.49131423
## 56 treatment 3.64790119
## 57 treatment 10.48679375
## 58 treatment 5.38800802
## 59 treatment -1.17545751
## 60 treatment 10.47391509
## 61 treatment 9.05987335
## 62 treatment 0.23914391
## 63 treatment 21.43217680
## 64 treatment 4.26860701
## 65 treatment 5.17805883
## 66 treatment 5.22321366
## 67 treatment 14.99477207
## 68 treatment 1.26855508
## 69 treatment 25.17807692
## 70 treatment 17.42745018
## 71 treatment 8.39423765
## 72 treatment 6.55804896
## 73 treatment 5.18016860
## 74 treatment 6.30796178
## 75 treatment 3.37572642
## 76 treatment 12.69773748
## 77 treatment 8.66974257
## 78 treatment 15.67958362
## 79 treatment 12.58921759
## 80 treatment 1.47324922
## 81 treatment 3.21327795
## 82 treatment -2.61820314
## 83 treatment 16.92743481
## 84 treatment 7.90379938
## 85 treatment 4.55179090
## 86 treatment 17.99270635
## 87 treatment 17.28759585
## 88 treatment -2.57690003
## 89 treatment 10.40353334
## 90 treatment 16.00736541
## 91 treatment 12.19158301
## 92 treatment 3.13675002
## 93 treatment 7.84084818
## 94 treatment -8.94834498
## 95 treatment -2.22412429
## 96 treatment 17.19128228
## 97 treatment 5.81780404
## 98 treatment 17.99684640
## 99 treatment 8.65946007
## 100 treatment 4.22792062
my_df <- rbind(my_df_1, my_df_2)
print(my_df)
## X Y
## 1 control 8.01548727
## 2 control 10.50685172
## 3 control 10.65627142
## 4 control 11.30071489
## 5 control 7.85412614
## 6 control 7.54202523
## 7 control 6.74234142
## 8 control 6.05216638
## 9 control 10.85733071
## 10 control 7.84987305
## 11 control 9.96984048
## 12 control 8.94451266
## 13 control 6.09691992
## 14 control 9.51518526
## 15 control 8.68043244
## 16 control 9.45471257
## 17 control 7.88613208
## 18 control 8.72219406
## 19 control 11.92826338
## 20 control 11.35023152
## 21 control 9.21901180
## 22 control 8.91987130
## 23 control 10.44973841
## 24 control 8.42796999
## 25 control 9.26669021
## 26 control 10.57593299
## 27 control 8.64385405
## 28 control 9.64685196
## 29 control 11.20582959
## 30 control 8.38306998
## 31 control 12.14335004
## 32 control 8.94045802
## 33 control 8.41551729
## 34 control 11.47546864
## 35 control 5.14607947
## 36 control 7.20689939
## 37 control 11.75499715
## 38 control 7.93614283
## 39 control 6.21705285
## 40 control 9.51845355
## 41 control 7.68674602
## 42 control 10.16592599
## 43 control 9.99940315
## 44 control 5.66498535
## 45 control 10.80023597
## 46 control 12.02256392
## 47 control 8.41408879
## 48 control 8.54730556
## 49 control 8.93662842
## 50 control 7.11150314
## 51 control 9.57745708
## 52 control 7.82690795
## 53 control 4.87371779
## 54 control 12.49209104
## 55 control 10.15910846
## 56 control 10.19714113
## 57 control 9.13394153
## 58 control 10.85509495
## 59 control 9.69757725
## 60 control 9.47572591
## 61 control 6.70616299
## 62 control 9.74234787
## 63 control 9.25316117
## 64 control 8.99782559
## 65 control 7.26523264
## 66 control 8.29387910
## 67 control 6.95274846
## 68 control 8.19768775
## 69 control 13.28187412
## 70 control 5.60421236
## 71 control 7.12808873
## 72 control 8.94429974
## 73 control 4.23463501
## 74 control 10.15262204
## 75 control 8.13196684
## 76 control 10.62340960
## 77 control 7.47246218
## 78 control 9.22915971
## 79 control 11.90031465
## 80 control 9.56792649
## 81 control 9.01068378
## 82 control 8.32302957
## 83 control 10.19762951
## 84 control 9.41203235
## 85 control 11.88370707
## 86 control 8.35031874
## 87 control 6.30846749
## 88 control 5.68914320
## 89 control 9.20747351
## 90 control 10.05614568
## 91 control 9.95282340
## 92 control 11.29848813
## 93 control 8.99079900
## 94 control 5.78574403
## 95 control 7.32656686
## 96 control 10.54802381
## 97 control 11.35047317
## 98 control 5.72173724
## 99 control 8.10265576
## 100 control 7.39234738
## 101 treatment 15.06553237
## 102 treatment 12.55207082
## 103 treatment 2.66834493
## 104 treatment 2.89383580
## 105 treatment 22.84157998
## 106 treatment 15.73650068
## 107 treatment 3.42260283
## 108 treatment 4.59607697
## 109 treatment 11.65627228
## 110 treatment 14.36190035
## 111 treatment 11.36870220
## 112 treatment 4.08817340
## 113 treatment 3.24622842
## 114 treatment -7.84706781
## 115 treatment 9.32661802
## 116 treatment 14.68893960
## 117 treatment 16.30155998
## 118 treatment 16.44571800
## 119 treatment 13.99474645
## 120 treatment 0.90078046
## 121 treatment -0.38212405
## 122 treatment 14.16610967
## 123 treatment -3.32316270
## 124 treatment 5.90530229
## 125 treatment -5.84003081
## 126 treatment 6.63039357
## 127 treatment 3.83546700
## 128 treatment 11.04188461
## 129 treatment 17.06773425
## 130 treatment 6.91789035
## 131 treatment 11.84958086
## 132 treatment -3.67064259
## 133 treatment 26.20414124
## 134 treatment 5.59224184
## 135 treatment -0.53038046
## 136 treatment 8.73393973
## 137 treatment 12.55368501
## 138 treatment 6.77439800
## 139 treatment 15.00433418
## 140 treatment 10.91881429
## 141 treatment 3.46672229
## 142 treatment 9.00650344
## 143 treatment -0.89030922
## 144 treatment 12.65637810
## 145 treatment 24.27719855
## 146 treatment 18.30161982
## 147 treatment 15.68443755
## 148 treatment 5.65876042
## 149 treatment 15.26692106
## 150 treatment 3.18694043
## 151 treatment 16.36698932
## 152 treatment 0.09582949
## 153 treatment 12.13693278
## 154 treatment 3.49710443
## 155 treatment 15.49131423
## 156 treatment 3.64790119
## 157 treatment 10.48679375
## 158 treatment 5.38800802
## 159 treatment -1.17545751
## 160 treatment 10.47391509
## 161 treatment 9.05987335
## 162 treatment 0.23914391
## 163 treatment 21.43217680
## 164 treatment 4.26860701
## 165 treatment 5.17805883
## 166 treatment 5.22321366
## 167 treatment 14.99477207
## 168 treatment 1.26855508
## 169 treatment 25.17807692
## 170 treatment 17.42745018
## 171 treatment 8.39423765
## 172 treatment 6.55804896
## 173 treatment 5.18016860
## 174 treatment 6.30796178
## 175 treatment 3.37572642
## 176 treatment 12.69773748
## 177 treatment 8.66974257
## 178 treatment 15.67958362
## 179 treatment 12.58921759
## 180 treatment 1.47324922
## 181 treatment 3.21327795
## 182 treatment -2.61820314
## 183 treatment 16.92743481
## 184 treatment 7.90379938
## 185 treatment 4.55179090
## 186 treatment 17.99270635
## 187 treatment 17.28759585
## 188 treatment -2.57690003
## 189 treatment 10.40353334
## 190 treatment 16.00736541
## 191 treatment 12.19158301
## 192 treatment 3.13675002
## 193 treatment 7.84084818
## 194 treatment -8.94834498
## 195 treatment -2.22412429
## 196 treatment 17.19128228
## 197 treatment 5.81780404
## 198 treatment 17.99684640
## 199 treatment 8.65946007
## 200 treatment 4.22792062
anova_data <- aov(Y ~ X, data = my_df)
summary_mean <- summary(anova_data)
print(summary_mean[[1]]$`Pr(>F)`)
## [1] 0.667244 NA
library(ggplot2)
plot <- ggplot(my_df, aes(X, Y)) + geom_boxplot() + labs(x="Conditions",y="Responses")
print(plot)
For Loop Generation- ADJUSTING SD
n <- sample(1:20)
for (i in 1:length(n)) {
print(n[i])
}
## [1] 14
## [1] 6
## [1] 16
## [1] 2
## [1] 8
## [1] 7
## [1] 9
## [1] 18
## [1] 19
## [1] 1
## [1] 4
## [1] 13
## [1] 12
## [1] 20
## [1] 3
## [1] 10
## [1] 17
## [1] 11
## [1] 5
## [1] 15
response_1 <- rnorm(n=100, mean=15, sd=n[i])
print(response_1)
## [1] -12.78522263 20.62456591 -7.46027880 26.47024723 -0.12116771
## [6] 16.95852807 19.25068877 7.13960524 18.49483249 26.17747308
## [11] -17.37357700 45.01699935 4.23513170 17.09739734 16.41183208
## [16] -6.09329978 24.77329153 19.40283135 10.44210082 -1.58403018
## [21] 18.29043335 25.51795184 -4.29413662 12.32676119 57.42602777
## [26] -17.72471418 38.13751354 6.81093135 27.37963894 45.03004790
## [31] -6.08525343 9.00316506 4.43987421 14.88970806 23.41013608
## [36] 22.67074484 31.83434749 10.14115768 18.01441514 9.62169036
## [41] 8.93918634 -1.70939351 2.53130859 3.95327582 20.73526743
## [46] 25.77461549 6.23906643 25.36972576 21.22850343 10.59247190
## [51] -18.83819676 18.03036641 24.98346027 35.28475449 32.52589404
## [56] 25.57439282 45.78960687 22.31103040 16.19265307 11.12905022
## [61] 25.33016733 23.70458929 4.70552730 5.65846033 23.65839780
## [66] 29.44269562 9.42602053 14.49418801 0.05377316 -2.59802494
## [71] 26.00753430 14.07144601 14.93948656 11.43019096 12.68081900
## [76] 13.15420351 -10.21423036 15.33283400 -12.25417027 -1.61601798
## [81] 23.86950569 -8.14644147 5.05820086 33.16996734 13.41902063
## [86] -21.64408526 18.61191219 14.40150307 40.65871428 1.31367597
## [91] 24.02782905 9.71662495 50.80705651 17.73760200 17.26280927
## [96] 18.37684087 -19.23272585 12.75602054 17.11441028 7.38483999
response_2 <- rnorm(n=100, mean=30, sd=n[i])
print(response_2)
## [1] 32.2816013 29.5193491 11.4495248 48.7178582 16.8835589 24.3174489
## [7] 61.2951341 24.8980320 44.3367836 16.6107640 17.9818120 39.8398480
## [13] 44.8702872 25.7819049 11.4321228 28.2910003 42.6928464 57.0093721
## [19] 30.4158455 58.0573316 51.8737447 16.2350726 26.0264779 12.5251133
## [25] 37.3174394 28.9274827 24.0414371 0.7020538 59.9252381 18.2226256
## [31] 33.4149988 22.4739051 58.8051335 77.0620182 4.0030219 18.0198925
## [37] 43.9801450 25.2012924 27.1031377 45.0528869 41.8714326 13.7258763
## [43] 40.7565698 56.8499367 8.9825537 46.6052998 22.0185874 9.1644180
## [49] 31.0151515 22.5660078 26.8688549 -0.2283261 22.8714999 54.2837486
## [55] 33.7175530 24.9563624 32.5114895 21.3506999 55.0860451 38.4927120
## [61] 53.8374420 40.2710012 22.3448131 6.8309335 17.3870957 52.5528631
## [67] 11.5375435 22.1369842 31.8255603 58.1353504 26.7316413 27.9421845
## [73] 25.5425382 29.2546000 26.5155057 34.3499947 20.4226601 29.5695648
## [79] 27.1274580 5.4395702 36.1096767 47.4416926 30.2419815 20.6762387
## [85] 37.5670562 35.4609582 17.7553226 34.2312170 8.0316282 25.5377703
## [91] -3.0946342 18.8775018 37.7265702 26.4407202 42.1834997 33.2883432
## [97] 32.2811453 39.3136553 19.9382527 22.3613981
response <- c(response_1, response_2)
my_df_1 <- data.frame (X = "control", Y= response_1)
print(my_df_1)
## X Y
## 1 control -12.78522263
## 2 control 20.62456591
## 3 control -7.46027880
## 4 control 26.47024723
## 5 control -0.12116771
## 6 control 16.95852807
## 7 control 19.25068877
## 8 control 7.13960524
## 9 control 18.49483249
## 10 control 26.17747308
## 11 control -17.37357700
## 12 control 45.01699935
## 13 control 4.23513170
## 14 control 17.09739734
## 15 control 16.41183208
## 16 control -6.09329978
## 17 control 24.77329153
## 18 control 19.40283135
## 19 control 10.44210082
## 20 control -1.58403018
## 21 control 18.29043335
## 22 control 25.51795184
## 23 control -4.29413662
## 24 control 12.32676119
## 25 control 57.42602777
## 26 control -17.72471418
## 27 control 38.13751354
## 28 control 6.81093135
## 29 control 27.37963894
## 30 control 45.03004790
## 31 control -6.08525343
## 32 control 9.00316506
## 33 control 4.43987421
## 34 control 14.88970806
## 35 control 23.41013608
## 36 control 22.67074484
## 37 control 31.83434749
## 38 control 10.14115768
## 39 control 18.01441514
## 40 control 9.62169036
## 41 control 8.93918634
## 42 control -1.70939351
## 43 control 2.53130859
## 44 control 3.95327582
## 45 control 20.73526743
## 46 control 25.77461549
## 47 control 6.23906643
## 48 control 25.36972576
## 49 control 21.22850343
## 50 control 10.59247190
## 51 control -18.83819676
## 52 control 18.03036641
## 53 control 24.98346027
## 54 control 35.28475449
## 55 control 32.52589404
## 56 control 25.57439282
## 57 control 45.78960687
## 58 control 22.31103040
## 59 control 16.19265307
## 60 control 11.12905022
## 61 control 25.33016733
## 62 control 23.70458929
## 63 control 4.70552730
## 64 control 5.65846033
## 65 control 23.65839780
## 66 control 29.44269562
## 67 control 9.42602053
## 68 control 14.49418801
## 69 control 0.05377316
## 70 control -2.59802494
## 71 control 26.00753430
## 72 control 14.07144601
## 73 control 14.93948656
## 74 control 11.43019096
## 75 control 12.68081900
## 76 control 13.15420351
## 77 control -10.21423036
## 78 control 15.33283400
## 79 control -12.25417027
## 80 control -1.61601798
## 81 control 23.86950569
## 82 control -8.14644147
## 83 control 5.05820086
## 84 control 33.16996734
## 85 control 13.41902063
## 86 control -21.64408526
## 87 control 18.61191219
## 88 control 14.40150307
## 89 control 40.65871428
## 90 control 1.31367597
## 91 control 24.02782905
## 92 control 9.71662495
## 93 control 50.80705651
## 94 control 17.73760200
## 95 control 17.26280927
## 96 control 18.37684087
## 97 control -19.23272585
## 98 control 12.75602054
## 99 control 17.11441028
## 100 control 7.38483999
my_df_2 <- data.frame(X = "treatment", Y = response_2)
print(my_df_2)
## X Y
## 1 treatment 32.2816013
## 2 treatment 29.5193491
## 3 treatment 11.4495248
## 4 treatment 48.7178582
## 5 treatment 16.8835589
## 6 treatment 24.3174489
## 7 treatment 61.2951341
## 8 treatment 24.8980320
## 9 treatment 44.3367836
## 10 treatment 16.6107640
## 11 treatment 17.9818120
## 12 treatment 39.8398480
## 13 treatment 44.8702872
## 14 treatment 25.7819049
## 15 treatment 11.4321228
## 16 treatment 28.2910003
## 17 treatment 42.6928464
## 18 treatment 57.0093721
## 19 treatment 30.4158455
## 20 treatment 58.0573316
## 21 treatment 51.8737447
## 22 treatment 16.2350726
## 23 treatment 26.0264779
## 24 treatment 12.5251133
## 25 treatment 37.3174394
## 26 treatment 28.9274827
## 27 treatment 24.0414371
## 28 treatment 0.7020538
## 29 treatment 59.9252381
## 30 treatment 18.2226256
## 31 treatment 33.4149988
## 32 treatment 22.4739051
## 33 treatment 58.8051335
## 34 treatment 77.0620182
## 35 treatment 4.0030219
## 36 treatment 18.0198925
## 37 treatment 43.9801450
## 38 treatment 25.2012924
## 39 treatment 27.1031377
## 40 treatment 45.0528869
## 41 treatment 41.8714326
## 42 treatment 13.7258763
## 43 treatment 40.7565698
## 44 treatment 56.8499367
## 45 treatment 8.9825537
## 46 treatment 46.6052998
## 47 treatment 22.0185874
## 48 treatment 9.1644180
## 49 treatment 31.0151515
## 50 treatment 22.5660078
## 51 treatment 26.8688549
## 52 treatment -0.2283261
## 53 treatment 22.8714999
## 54 treatment 54.2837486
## 55 treatment 33.7175530
## 56 treatment 24.9563624
## 57 treatment 32.5114895
## 58 treatment 21.3506999
## 59 treatment 55.0860451
## 60 treatment 38.4927120
## 61 treatment 53.8374420
## 62 treatment 40.2710012
## 63 treatment 22.3448131
## 64 treatment 6.8309335
## 65 treatment 17.3870957
## 66 treatment 52.5528631
## 67 treatment 11.5375435
## 68 treatment 22.1369842
## 69 treatment 31.8255603
## 70 treatment 58.1353504
## 71 treatment 26.7316413
## 72 treatment 27.9421845
## 73 treatment 25.5425382
## 74 treatment 29.2546000
## 75 treatment 26.5155057
## 76 treatment 34.3499947
## 77 treatment 20.4226601
## 78 treatment 29.5695648
## 79 treatment 27.1274580
## 80 treatment 5.4395702
## 81 treatment 36.1096767
## 82 treatment 47.4416926
## 83 treatment 30.2419815
## 84 treatment 20.6762387
## 85 treatment 37.5670562
## 86 treatment 35.4609582
## 87 treatment 17.7553226
## 88 treatment 34.2312170
## 89 treatment 8.0316282
## 90 treatment 25.5377703
## 91 treatment -3.0946342
## 92 treatment 18.8775018
## 93 treatment 37.7265702
## 94 treatment 26.4407202
## 95 treatment 42.1834997
## 96 treatment 33.2883432
## 97 treatment 32.2811453
## 98 treatment 39.3136553
## 99 treatment 19.9382527
## 100 treatment 22.3613981
my_df <- rbind(my_df_1, my_df_2)
print(my_df)
## X Y
## 1 control -12.78522263
## 2 control 20.62456591
## 3 control -7.46027880
## 4 control 26.47024723
## 5 control -0.12116771
## 6 control 16.95852807
## 7 control 19.25068877
## 8 control 7.13960524
## 9 control 18.49483249
## 10 control 26.17747308
## 11 control -17.37357700
## 12 control 45.01699935
## 13 control 4.23513170
## 14 control 17.09739734
## 15 control 16.41183208
## 16 control -6.09329978
## 17 control 24.77329153
## 18 control 19.40283135
## 19 control 10.44210082
## 20 control -1.58403018
## 21 control 18.29043335
## 22 control 25.51795184
## 23 control -4.29413662
## 24 control 12.32676119
## 25 control 57.42602777
## 26 control -17.72471418
## 27 control 38.13751354
## 28 control 6.81093135
## 29 control 27.37963894
## 30 control 45.03004790
## 31 control -6.08525343
## 32 control 9.00316506
## 33 control 4.43987421
## 34 control 14.88970806
## 35 control 23.41013608
## 36 control 22.67074484
## 37 control 31.83434749
## 38 control 10.14115768
## 39 control 18.01441514
## 40 control 9.62169036
## 41 control 8.93918634
## 42 control -1.70939351
## 43 control 2.53130859
## 44 control 3.95327582
## 45 control 20.73526743
## 46 control 25.77461549
## 47 control 6.23906643
## 48 control 25.36972576
## 49 control 21.22850343
## 50 control 10.59247190
## 51 control -18.83819676
## 52 control 18.03036641
## 53 control 24.98346027
## 54 control 35.28475449
## 55 control 32.52589404
## 56 control 25.57439282
## 57 control 45.78960687
## 58 control 22.31103040
## 59 control 16.19265307
## 60 control 11.12905022
## 61 control 25.33016733
## 62 control 23.70458929
## 63 control 4.70552730
## 64 control 5.65846033
## 65 control 23.65839780
## 66 control 29.44269562
## 67 control 9.42602053
## 68 control 14.49418801
## 69 control 0.05377316
## 70 control -2.59802494
## 71 control 26.00753430
## 72 control 14.07144601
## 73 control 14.93948656
## 74 control 11.43019096
## 75 control 12.68081900
## 76 control 13.15420351
## 77 control -10.21423036
## 78 control 15.33283400
## 79 control -12.25417027
## 80 control -1.61601798
## 81 control 23.86950569
## 82 control -8.14644147
## 83 control 5.05820086
## 84 control 33.16996734
## 85 control 13.41902063
## 86 control -21.64408526
## 87 control 18.61191219
## 88 control 14.40150307
## 89 control 40.65871428
## 90 control 1.31367597
## 91 control 24.02782905
## 92 control 9.71662495
## 93 control 50.80705651
## 94 control 17.73760200
## 95 control 17.26280927
## 96 control 18.37684087
## 97 control -19.23272585
## 98 control 12.75602054
## 99 control 17.11441028
## 100 control 7.38483999
## 101 treatment 32.28160127
## 102 treatment 29.51934912
## 103 treatment 11.44952477
## 104 treatment 48.71785821
## 105 treatment 16.88355890
## 106 treatment 24.31744885
## 107 treatment 61.29513406
## 108 treatment 24.89803203
## 109 treatment 44.33678364
## 110 treatment 16.61076401
## 111 treatment 17.98181195
## 112 treatment 39.83984805
## 113 treatment 44.87028721
## 114 treatment 25.78190493
## 115 treatment 11.43212277
## 116 treatment 28.29100030
## 117 treatment 42.69284642
## 118 treatment 57.00937214
## 119 treatment 30.41584552
## 120 treatment 58.05733160
## 121 treatment 51.87374472
## 122 treatment 16.23507261
## 123 treatment 26.02647793
## 124 treatment 12.52511329
## 125 treatment 37.31743936
## 126 treatment 28.92748274
## 127 treatment 24.04143710
## 128 treatment 0.70205381
## 129 treatment 59.92523813
## 130 treatment 18.22262564
## 131 treatment 33.41499882
## 132 treatment 22.47390511
## 133 treatment 58.80513352
## 134 treatment 77.06201823
## 135 treatment 4.00302195
## 136 treatment 18.01989248
## 137 treatment 43.98014502
## 138 treatment 25.20129243
## 139 treatment 27.10313772
## 140 treatment 45.05288688
## 141 treatment 41.87143262
## 142 treatment 13.72587632
## 143 treatment 40.75656980
## 144 treatment 56.84993670
## 145 treatment 8.98255367
## 146 treatment 46.60529985
## 147 treatment 22.01858744
## 148 treatment 9.16441800
## 149 treatment 31.01515152
## 150 treatment 22.56600785
## 151 treatment 26.86885492
## 152 treatment -0.22832613
## 153 treatment 22.87149987
## 154 treatment 54.28374860
## 155 treatment 33.71755300
## 156 treatment 24.95636242
## 157 treatment 32.51148945
## 158 treatment 21.35069986
## 159 treatment 55.08604507
## 160 treatment 38.49271200
## 161 treatment 53.83744195
## 162 treatment 40.27100120
## 163 treatment 22.34481312
## 164 treatment 6.83093348
## 165 treatment 17.38709568
## 166 treatment 52.55286312
## 167 treatment 11.53754354
## 168 treatment 22.13698422
## 169 treatment 31.82556034
## 170 treatment 58.13535041
## 171 treatment 26.73164134
## 172 treatment 27.94218449
## 173 treatment 25.54253818
## 174 treatment 29.25460005
## 175 treatment 26.51550571
## 176 treatment 34.34999470
## 177 treatment 20.42266015
## 178 treatment 29.56956480
## 179 treatment 27.12745797
## 180 treatment 5.43957021
## 181 treatment 36.10967675
## 182 treatment 47.44169262
## 183 treatment 30.24198150
## 184 treatment 20.67623868
## 185 treatment 37.56705625
## 186 treatment 35.46095817
## 187 treatment 17.75532258
## 188 treatment 34.23121698
## 189 treatment 8.03162817
## 190 treatment 25.53777029
## 191 treatment -3.09463416
## 192 treatment 18.87750182
## 193 treatment 37.72657022
## 194 treatment 26.44072022
## 195 treatment 42.18349967
## 196 treatment 33.28834317
## 197 treatment 32.28114535
## 198 treatment 39.31365528
## 199 treatment 19.93825268
## 200 treatment 22.36139806
anova_data <- aov(Y ~ X, data = my_df)
summary_sd <- summary(anova_data)
print(summary_sd[[1]]$`Pr(>F)`)
## [1] 3.344654e-12 NA
library(ggplot2)
plot <- ggplot(my_df, aes(X, Y)) + geom_boxplot() + labs(x="Conditions",y="Responses")
print(plot)
Comparing p-values
print(summary[[1]]$`Pr(>F)`)
## [1] 9.625196e-48 NA
print(summary_sample[[1]]$`Pr(>F)`)
## [1] 9.503998e-160 NA
print(summary_mean[[1]]$`Pr(>F)`)
## [1] 0.667244 NA
print(summary_sd[[1]]$`Pr(>F)`)
## [1] 3.344654e-12 NA
Discussion on p-values