Write code to create a random data set with a normal distribution and defined standard deviation, sample size, and mean.

response_1 <- rnorm(n=100, mean=15, sd=2)
print(response_1)
##   [1] 16.695852 14.134889 16.836259 17.052633 17.378851 12.827936 15.604465
##   [8] 11.256870 15.439080 12.530160 14.844111 14.379122 13.360242 16.419136
##  [15] 13.802127 15.628159 14.724604 11.131548 14.535433 14.217587 13.013216
##  [22] 10.888665 17.289880 15.244600 14.870457 11.560493 17.099365  8.753099
##  [29] 12.883340 14.397212 15.766967 15.637636 14.616406 13.390958 17.062114
##  [36] 12.493464 17.515582 15.942499 12.795639 13.910863 14.178760 15.708669
##  [43] 12.665902 15.187390 14.724241 11.639840 16.871939 12.647447 14.995611
##  [50] 14.911524 17.734164 14.370351 21.497606 16.980610 11.590431 14.924306
##  [57] 15.139393 13.184327 16.329107 15.176128 15.784551 11.691373 10.911035
##  [64] 13.150507 15.485279 11.842484 17.182550 13.218343 13.291161 16.881731
##  [71] 18.451548 15.238743 13.226023 12.677302 11.372428 19.263868 14.628141
##  [78] 17.953778 14.519602 14.251358 14.954719 12.587969 13.165675 17.182969
##  [85] 11.994263 15.635901 14.954240 14.767495 13.894351 16.749916 13.239863
##  [92] 15.446337 18.596616 16.956178 17.408535 14.879632 14.542603 18.531180
##  [99] 14.703007 17.275452
response_2 <- rnorm(n=100, mean=30, sd=7)
print(response_2)
##   [1] 23.73787 24.52476 32.98075 29.57842 21.65515 22.91396 41.69338 39.75025
##   [9] 29.93191 38.85907 33.91004 29.87413 40.41246 38.98858 29.13097 34.89480
##  [17] 30.78691 26.49865 17.59350 32.03734 37.39623 44.15150 28.61513 30.30428
##  [25] 21.80110 26.71424 18.81773 35.97930 17.78623 35.61670 33.00931 27.98984
##  [33] 26.04214 26.85310 26.05798 34.29744 33.87735 26.40611 21.67034 29.92104
##  [41] 40.45071 17.60327 28.86730 15.77071 31.98644 44.92483 22.47553 24.56614
##  [49] 14.80915 27.31592 28.24998 31.10416 28.62520 20.89597 40.99248 32.56545
##  [57] 33.47086 26.20120 33.26426 29.05656 19.69635 35.45762 26.53422 20.36429
##  [65] 30.73671 20.37620 27.53031 40.45109 31.59572 27.71714 35.82909 35.42393
##  [73] 34.95636 33.92385 27.91765 36.92323 33.97860 36.28277 20.34941 24.69839
##  [81] 19.05253 48.15389 37.38703 35.83028 25.93177 27.33178 18.06827 31.27205
##  [89] 35.92205 46.89977 23.23690 29.35381 17.80271 31.10941 18.16479 30.49786
##  [97] 49.10212 27.35402 23.86064 25.94971
response <- c(response_1, response_2)

Organize these data into a data frame with the appropriate structure.

my_df_1 <- data.frame (X = "control", Y= response_1)
print(my_df_1)
##           X         Y
## 1   control 16.695852
## 2   control 14.134889
## 3   control 16.836259
## 4   control 17.052633
## 5   control 17.378851
## 6   control 12.827936
## 7   control 15.604465
## 8   control 11.256870
## 9   control 15.439080
## 10  control 12.530160
## 11  control 14.844111
## 12  control 14.379122
## 13  control 13.360242
## 14  control 16.419136
## 15  control 13.802127
## 16  control 15.628159
## 17  control 14.724604
## 18  control 11.131548
## 19  control 14.535433
## 20  control 14.217587
## 21  control 13.013216
## 22  control 10.888665
## 23  control 17.289880
## 24  control 15.244600
## 25  control 14.870457
## 26  control 11.560493
## 27  control 17.099365
## 28  control  8.753099
## 29  control 12.883340
## 30  control 14.397212
## 31  control 15.766967
## 32  control 15.637636
## 33  control 14.616406
## 34  control 13.390958
## 35  control 17.062114
## 36  control 12.493464
## 37  control 17.515582
## 38  control 15.942499
## 39  control 12.795639
## 40  control 13.910863
## 41  control 14.178760
## 42  control 15.708669
## 43  control 12.665902
## 44  control 15.187390
## 45  control 14.724241
## 46  control 11.639840
## 47  control 16.871939
## 48  control 12.647447
## 49  control 14.995611
## 50  control 14.911524
## 51  control 17.734164
## 52  control 14.370351
## 53  control 21.497606
## 54  control 16.980610
## 55  control 11.590431
## 56  control 14.924306
## 57  control 15.139393
## 58  control 13.184327
## 59  control 16.329107
## 60  control 15.176128
## 61  control 15.784551
## 62  control 11.691373
## 63  control 10.911035
## 64  control 13.150507
## 65  control 15.485279
## 66  control 11.842484
## 67  control 17.182550
## 68  control 13.218343
## 69  control 13.291161
## 70  control 16.881731
## 71  control 18.451548
## 72  control 15.238743
## 73  control 13.226023
## 74  control 12.677302
## 75  control 11.372428
## 76  control 19.263868
## 77  control 14.628141
## 78  control 17.953778
## 79  control 14.519602
## 80  control 14.251358
## 81  control 14.954719
## 82  control 12.587969
## 83  control 13.165675
## 84  control 17.182969
## 85  control 11.994263
## 86  control 15.635901
## 87  control 14.954240
## 88  control 14.767495
## 89  control 13.894351
## 90  control 16.749916
## 91  control 13.239863
## 92  control 15.446337
## 93  control 18.596616
## 94  control 16.956178
## 95  control 17.408535
## 96  control 14.879632
## 97  control 14.542603
## 98  control 18.531180
## 99  control 14.703007
## 100 control 17.275452
my_df_2 <- data.frame(X = "treatment", Y = response_2)
print(my_df_2)
##             X        Y
## 1   treatment 23.73787
## 2   treatment 24.52476
## 3   treatment 32.98075
## 4   treatment 29.57842
## 5   treatment 21.65515
## 6   treatment 22.91396
## 7   treatment 41.69338
## 8   treatment 39.75025
## 9   treatment 29.93191
## 10  treatment 38.85907
## 11  treatment 33.91004
## 12  treatment 29.87413
## 13  treatment 40.41246
## 14  treatment 38.98858
## 15  treatment 29.13097
## 16  treatment 34.89480
## 17  treatment 30.78691
## 18  treatment 26.49865
## 19  treatment 17.59350
## 20  treatment 32.03734
## 21  treatment 37.39623
## 22  treatment 44.15150
## 23  treatment 28.61513
## 24  treatment 30.30428
## 25  treatment 21.80110
## 26  treatment 26.71424
## 27  treatment 18.81773
## 28  treatment 35.97930
## 29  treatment 17.78623
## 30  treatment 35.61670
## 31  treatment 33.00931
## 32  treatment 27.98984
## 33  treatment 26.04214
## 34  treatment 26.85310
## 35  treatment 26.05798
## 36  treatment 34.29744
## 37  treatment 33.87735
## 38  treatment 26.40611
## 39  treatment 21.67034
## 40  treatment 29.92104
## 41  treatment 40.45071
## 42  treatment 17.60327
## 43  treatment 28.86730
## 44  treatment 15.77071
## 45  treatment 31.98644
## 46  treatment 44.92483
## 47  treatment 22.47553
## 48  treatment 24.56614
## 49  treatment 14.80915
## 50  treatment 27.31592
## 51  treatment 28.24998
## 52  treatment 31.10416
## 53  treatment 28.62520
## 54  treatment 20.89597
## 55  treatment 40.99248
## 56  treatment 32.56545
## 57  treatment 33.47086
## 58  treatment 26.20120
## 59  treatment 33.26426
## 60  treatment 29.05656
## 61  treatment 19.69635
## 62  treatment 35.45762
## 63  treatment 26.53422
## 64  treatment 20.36429
## 65  treatment 30.73671
## 66  treatment 20.37620
## 67  treatment 27.53031
## 68  treatment 40.45109
## 69  treatment 31.59572
## 70  treatment 27.71714
## 71  treatment 35.82909
## 72  treatment 35.42393
## 73  treatment 34.95636
## 74  treatment 33.92385
## 75  treatment 27.91765
## 76  treatment 36.92323
## 77  treatment 33.97860
## 78  treatment 36.28277
## 79  treatment 20.34941
## 80  treatment 24.69839
## 81  treatment 19.05253
## 82  treatment 48.15389
## 83  treatment 37.38703
## 84  treatment 35.83028
## 85  treatment 25.93177
## 86  treatment 27.33178
## 87  treatment 18.06827
## 88  treatment 31.27205
## 89  treatment 35.92205
## 90  treatment 46.89977
## 91  treatment 23.23690
## 92  treatment 29.35381
## 93  treatment 17.80271
## 94  treatment 31.10941
## 95  treatment 18.16479
## 96  treatment 30.49786
## 97  treatment 49.10212
## 98  treatment 27.35402
## 99  treatment 23.86064
## 100 treatment 25.94971
my_df <- rbind(my_df_1, my_df_2)
print(my_df)
##             X         Y
## 1     control 16.695852
## 2     control 14.134889
## 3     control 16.836259
## 4     control 17.052633
## 5     control 17.378851
## 6     control 12.827936
## 7     control 15.604465
## 8     control 11.256870
## 9     control 15.439080
## 10    control 12.530160
## 11    control 14.844111
## 12    control 14.379122
## 13    control 13.360242
## 14    control 16.419136
## 15    control 13.802127
## 16    control 15.628159
## 17    control 14.724604
## 18    control 11.131548
## 19    control 14.535433
## 20    control 14.217587
## 21    control 13.013216
## 22    control 10.888665
## 23    control 17.289880
## 24    control 15.244600
## 25    control 14.870457
## 26    control 11.560493
## 27    control 17.099365
## 28    control  8.753099
## 29    control 12.883340
## 30    control 14.397212
## 31    control 15.766967
## 32    control 15.637636
## 33    control 14.616406
## 34    control 13.390958
## 35    control 17.062114
## 36    control 12.493464
## 37    control 17.515582
## 38    control 15.942499
## 39    control 12.795639
## 40    control 13.910863
## 41    control 14.178760
## 42    control 15.708669
## 43    control 12.665902
## 44    control 15.187390
## 45    control 14.724241
## 46    control 11.639840
## 47    control 16.871939
## 48    control 12.647447
## 49    control 14.995611
## 50    control 14.911524
## 51    control 17.734164
## 52    control 14.370351
## 53    control 21.497606
## 54    control 16.980610
## 55    control 11.590431
## 56    control 14.924306
## 57    control 15.139393
## 58    control 13.184327
## 59    control 16.329107
## 60    control 15.176128
## 61    control 15.784551
## 62    control 11.691373
## 63    control 10.911035
## 64    control 13.150507
## 65    control 15.485279
## 66    control 11.842484
## 67    control 17.182550
## 68    control 13.218343
## 69    control 13.291161
## 70    control 16.881731
## 71    control 18.451548
## 72    control 15.238743
## 73    control 13.226023
## 74    control 12.677302
## 75    control 11.372428
## 76    control 19.263868
## 77    control 14.628141
## 78    control 17.953778
## 79    control 14.519602
## 80    control 14.251358
## 81    control 14.954719
## 82    control 12.587969
## 83    control 13.165675
## 84    control 17.182969
## 85    control 11.994263
## 86    control 15.635901
## 87    control 14.954240
## 88    control 14.767495
## 89    control 13.894351
## 90    control 16.749916
## 91    control 13.239863
## 92    control 15.446337
## 93    control 18.596616
## 94    control 16.956178
## 95    control 17.408535
## 96    control 14.879632
## 97    control 14.542603
## 98    control 18.531180
## 99    control 14.703007
## 100   control 17.275452
## 101 treatment 23.737866
## 102 treatment 24.524758
## 103 treatment 32.980752
## 104 treatment 29.578425
## 105 treatment 21.655145
## 106 treatment 22.913957
## 107 treatment 41.693382
## 108 treatment 39.750249
## 109 treatment 29.931915
## 110 treatment 38.859066
## 111 treatment 33.910041
## 112 treatment 29.874126
## 113 treatment 40.412459
## 114 treatment 38.988576
## 115 treatment 29.130972
## 116 treatment 34.894803
## 117 treatment 30.786907
## 118 treatment 26.498648
## 119 treatment 17.593499
## 120 treatment 32.037338
## 121 treatment 37.396227
## 122 treatment 44.151502
## 123 treatment 28.615135
## 124 treatment 30.304277
## 125 treatment 21.801097
## 126 treatment 26.714245
## 127 treatment 18.817727
## 128 treatment 35.979303
## 129 treatment 17.786228
## 130 treatment 35.616699
## 131 treatment 33.009308
## 132 treatment 27.989845
## 133 treatment 26.042141
## 134 treatment 26.853101
## 135 treatment 26.057985
## 136 treatment 34.297438
## 137 treatment 33.877354
## 138 treatment 26.406106
## 139 treatment 21.670339
## 140 treatment 29.921039
## 141 treatment 40.450705
## 142 treatment 17.603271
## 143 treatment 28.867296
## 144 treatment 15.770715
## 145 treatment 31.986444
## 146 treatment 44.924834
## 147 treatment 22.475527
## 148 treatment 24.566140
## 149 treatment 14.809151
## 150 treatment 27.315920
## 151 treatment 28.249976
## 152 treatment 31.104156
## 153 treatment 28.625196
## 154 treatment 20.895972
## 155 treatment 40.992479
## 156 treatment 32.565448
## 157 treatment 33.470865
## 158 treatment 26.201199
## 159 treatment 33.264263
## 160 treatment 29.056560
## 161 treatment 19.696355
## 162 treatment 35.457621
## 163 treatment 26.534218
## 164 treatment 20.364288
## 165 treatment 30.736712
## 166 treatment 20.376203
## 167 treatment 27.530310
## 168 treatment 40.451088
## 169 treatment 31.595725
## 170 treatment 27.717135
## 171 treatment 35.829092
## 172 treatment 35.423928
## 173 treatment 34.956358
## 174 treatment 33.923851
## 175 treatment 27.917648
## 176 treatment 36.923227
## 177 treatment 33.978602
## 178 treatment 36.282769
## 179 treatment 20.349408
## 180 treatment 24.698388
## 181 treatment 19.052533
## 182 treatment 48.153890
## 183 treatment 37.387035
## 184 treatment 35.830283
## 185 treatment 25.931771
## 186 treatment 27.331780
## 187 treatment 18.068266
## 188 treatment 31.272054
## 189 treatment 35.922051
## 190 treatment 46.899769
## 191 treatment 23.236899
## 192 treatment 29.353808
## 193 treatment 17.802711
## 194 treatment 31.109413
## 195 treatment 18.164789
## 196 treatment 30.497860
## 197 treatment 49.102117
## 198 treatment 27.354017
## 199 treatment 23.860638
## 200 treatment 25.949715

Analyze and graph the data.

anova_data <- aov(Y ~ X, data = my_df)
summary <- summary(anova_data)
print(summary[[1]]$`Pr(>F)`)
## [1] 4.32457e-47          NA
library(ggplot2)
plot <- ggplot(my_df, aes(X, Y)) + geom_boxplot() + labs(x="Conditions",y="Responses")
print(plot)

For Loop Generation- ADJUSTING SAMPLE SIZE

n <- seq(50, 300, 10)
for (i in 1:length(n)) {
  print(n[i])
}
## [1] 50
## [1] 60
## [1] 70
## [1] 80
## [1] 90
## [1] 100
## [1] 110
## [1] 120
## [1] 130
## [1] 140
## [1] 150
## [1] 160
## [1] 170
## [1] 180
## [1] 190
## [1] 200
## [1] 210
## [1] 220
## [1] 230
## [1] 240
## [1] 250
## [1] 260
## [1] 270
## [1] 280
## [1] 290
## [1] 300
response_1 <- rnorm(n=n[i], mean=15, sd=2)
print(response_1)
##   [1] 15.845688 13.766000 12.188043 17.966621 12.663302 13.040924 13.845013
##   [8] 13.394905 12.566985 17.886414 12.443099 10.977315 14.441809 11.278168
##  [15] 18.102612 10.966307 14.888301 15.130296 17.832455 18.476672 13.714718
##  [22] 11.699349 14.898118 16.335622 15.597334 15.040780 12.497739 10.899829
##  [29] 16.251294 14.041026 19.549825 13.741472 15.986247 16.841466 14.275580
##  [36] 13.701906 17.220681 16.104756 13.933853 14.015272 15.119835 12.454858
##  [43] 14.214331 13.378400 17.109698 15.347842 14.876872 17.796956 16.193227
##  [50] 13.200817 12.892231 17.389278 18.237272  9.244281 17.564843 14.005173
##  [57] 17.344672 17.264653 20.175136 12.937925 17.155325 14.819020 16.481670
##  [64] 15.117832 16.668905 17.420302 17.480279 14.911423 14.906576 17.452756
##  [71] 17.839417 15.271438 11.875446 14.590054 15.460106 11.396992 11.761978
##  [78] 14.607521 15.834956 14.996180 14.069052 17.146390 15.742335 15.341547
##  [85] 15.444329 15.333947 12.545089 12.983426 15.421303 15.550993 15.290308
##  [92] 15.238506 16.076253 13.312559 16.453003 13.149430 17.729357 14.683914
##  [99] 14.894517 12.523711 18.921422 18.082309 16.915363 14.130081 16.118337
## [106] 15.347603 15.949364 18.091592 15.062235 19.219994 15.400987 14.584918
## [113] 15.964938 13.227053 18.333932 13.110782 16.665698 15.260495 12.267298
## [120] 14.961228 14.205271 11.876696 12.833362 13.433818 15.051387 14.120215
## [127] 13.453148 11.612670 14.730655 14.264607 12.936657 14.912066 15.717910
## [134] 10.124879 14.287971 16.077061 14.036332 14.713361 12.061766 15.052457
## [141] 16.774622 16.839735 14.114072 12.897993 13.550470 19.713716 12.786637
## [148] 15.838841 16.648208 13.449274 16.222924 14.493680 16.028821 15.941623
## [155] 12.940697 12.894405 14.975036 14.302950 13.610012 16.842574 14.964099
## [162] 17.298302 12.459064 10.760213 15.872903 14.150579 14.480269 13.130200
## [169] 16.962933 18.746597 13.582140 14.716974 13.509258 12.930663 12.443867
## [176] 15.868312 14.428133 13.169966 19.561845 11.434285 12.878539 14.194731
## [183] 15.216774 17.539386 17.140165 12.952520 14.209335 13.995316 12.344480
## [190] 16.032057 17.162782 16.468242 15.635439 16.372646 12.759555 15.292807
## [197] 17.105736 18.501378 17.348966 13.745762 15.701799 15.134187 14.843524
## [204] 13.112650 17.475101 14.628668 12.942149 13.406676 13.850052 18.258698
## [211] 11.623975 11.933636 17.172744 13.809366 15.997766 15.403434 20.176128
## [218] 16.887616 11.667877 14.488705 15.812213 13.447765 15.703081 14.158979
## [225] 13.822084 13.305827 12.406651 16.556369 17.302010 14.212085 14.358921
## [232] 13.132984 15.932946 11.602469 16.709650 15.627276 13.946508 14.766723
## [239] 16.073403 13.121347 11.447691 17.105150 15.401262 13.794852 15.442127
## [246] 17.718125 16.687793 19.231285 15.925147 15.559275 16.830057 15.671893
## [253] 16.126708 15.171094 14.838882 18.312675 15.575711 14.987896 13.946649
## [260] 12.525422 15.070050 14.784289 15.208838 17.452294 15.341537 14.450697
## [267] 14.822248 15.318193 17.479394 15.986616 13.672416 13.789731 16.523560
## [274] 17.423232 12.130760 15.086576 14.878881 16.472609 17.216869 15.240735
## [281] 16.453615 14.801515 16.528108 14.104569 14.834100 16.939517 12.968469
## [288] 11.415850 17.005871 14.524407 16.189411 15.806957 12.371307 12.858071
## [295] 17.732788 17.524192 11.928853 14.787688 16.734834 15.140659
response_2 <- rnorm(n=n[i], mean=30, sd=7)
print(response_2)
##   [1] 25.89453 24.92026 34.68626 25.91698 21.14162 17.83858 27.66674 31.76053
##   [9] 35.83377 37.79231 24.49962 23.84047 32.87002 28.14755 28.55412 37.18601
##  [17] 17.16231 30.54004 28.36019 21.83245 29.48162 29.68191 27.56628 24.39156
##  [25] 38.47862 18.51075 43.33400 37.05601 25.00924 22.71147 26.66828 34.08687
##  [33] 27.19539 30.92594 32.23904 39.65697 17.62888 25.92304 29.81455 33.51461
##  [41] 29.00845 30.48123 19.39456 28.93531 27.80324 36.21929 36.10386 34.42478
##  [49] 30.58603 26.23377 32.50748 22.25740 34.16720 40.42598 33.77019 36.40507
##  [57] 25.76790 17.74040 24.20601 34.52318 31.43388 33.87598 20.53913 26.02588
##  [65] 35.60793 38.05866 22.31195 26.51599 17.27620 22.94866 29.14389 39.78318
##  [73] 19.10416 40.14413 30.36407 37.97179 29.55690 38.58147 36.73548 33.15898
##  [81] 29.28804 36.96383 33.63071 20.58804 26.66947 29.14988 36.89028 23.31893
##  [89] 25.42711 27.74745 31.87686 30.46570 20.06558 22.57101 27.96268 29.26652
##  [97] 31.45332 30.21438 24.60379 25.58682 40.01339 25.52374 29.72107 29.20366
## [105] 26.20068 36.69024 24.86382 37.33340 43.46706 37.56918 42.76017 24.39733
## [113] 35.59184 40.93842 36.94259 35.59288 29.69423 24.76408 36.29383 21.48142
## [121] 19.25892 27.62404 37.30926 32.49803 38.66776 32.77891 29.20542 34.86763
## [129] 24.49568 32.22441 20.31189 23.03071 42.40666 15.50958 35.88186 38.49831
## [137] 43.48124 32.19931 27.80884 37.09524 36.55542 40.90015 24.94328 19.98640
## [145] 20.78478 27.52169 32.26071 26.34566 39.25019 33.16840 29.92957 34.98952
## [153] 43.93749 37.94843 22.32505 15.88186 25.64221 28.93507 12.20247 40.90000
## [161] 20.95767 28.49283 29.70239 18.53235 16.88437 25.55463 17.04118 29.54966
## [169] 46.01936 34.14883 35.19340 17.79502 25.29602 14.31116 26.15703 32.96896
## [177] 21.67325 35.73604 35.47398 26.25196 43.29784 33.07070 38.12227 42.41291
## [185] 26.06957 30.69144 32.84042 34.70023 34.69487 31.21848 42.17385 28.25372
## [193] 42.58303 31.51616 24.20260 26.44154 30.71037 32.45346 29.72875 27.03129
## [201] 32.10095 34.84873 22.69028 25.57455 23.23676 32.06075 35.81862 31.90711
## [209] 33.27452 43.57338 30.66072 30.77189 48.46094 26.92072 32.54964 17.35557
## [217] 44.00053 24.63712 31.86493 20.67622 16.20475 32.11259 22.29361 28.97514
## [225] 31.30704 16.52182 23.93700 29.57401 27.77936 30.40883 36.99655 29.42256
## [233] 22.41756 25.98986 37.19901 25.85200 23.82268 29.82229 26.24772 25.40924
## [241] 28.19010 20.78238 38.96163 30.72340 34.36949 30.15540 26.65466 33.58054
## [249] 28.76809 18.49660 31.33069 37.02710 36.29702 27.18876 24.68236 32.05999
## [257] 29.25286 18.15099 33.52195 28.99616 31.53082 23.40189 42.90851 23.30414
## [265] 23.80968 19.86736 32.37340 23.88552 20.33823 35.19574 29.87279 36.16131
## [273] 39.13640 26.98761 37.29063 40.31162 34.20356 24.70889 37.18728 20.84999
## [281] 19.38851 23.38274 35.59863 29.23338 18.84662 30.81085 26.73939 26.62999
## [289] 32.35022 25.47829 34.60555 18.26799 35.02056 26.30927 44.72694 20.05315
## [297] 27.58404 36.54715 45.14242 30.28634
response <- c(response_1, response_2)

my_df_1 <- data.frame (X = "control", Y= response_1)
print(my_df_1)
##           X         Y
## 1   control 15.845688
## 2   control 13.766000
## 3   control 12.188043
## 4   control 17.966621
## 5   control 12.663302
## 6   control 13.040924
## 7   control 13.845013
## 8   control 13.394905
## 9   control 12.566985
## 10  control 17.886414
## 11  control 12.443099
## 12  control 10.977315
## 13  control 14.441809
## 14  control 11.278168
## 15  control 18.102612
## 16  control 10.966307
## 17  control 14.888301
## 18  control 15.130296
## 19  control 17.832455
## 20  control 18.476672
## 21  control 13.714718
## 22  control 11.699349
## 23  control 14.898118
## 24  control 16.335622
## 25  control 15.597334
## 26  control 15.040780
## 27  control 12.497739
## 28  control 10.899829
## 29  control 16.251294
## 30  control 14.041026
## 31  control 19.549825
## 32  control 13.741472
## 33  control 15.986247
## 34  control 16.841466
## 35  control 14.275580
## 36  control 13.701906
## 37  control 17.220681
## 38  control 16.104756
## 39  control 13.933853
## 40  control 14.015272
## 41  control 15.119835
## 42  control 12.454858
## 43  control 14.214331
## 44  control 13.378400
## 45  control 17.109698
## 46  control 15.347842
## 47  control 14.876872
## 48  control 17.796956
## 49  control 16.193227
## 50  control 13.200817
## 51  control 12.892231
## 52  control 17.389278
## 53  control 18.237272
## 54  control  9.244281
## 55  control 17.564843
## 56  control 14.005173
## 57  control 17.344672
## 58  control 17.264653
## 59  control 20.175136
## 60  control 12.937925
## 61  control 17.155325
## 62  control 14.819020
## 63  control 16.481670
## 64  control 15.117832
## 65  control 16.668905
## 66  control 17.420302
## 67  control 17.480279
## 68  control 14.911423
## 69  control 14.906576
## 70  control 17.452756
## 71  control 17.839417
## 72  control 15.271438
## 73  control 11.875446
## 74  control 14.590054
## 75  control 15.460106
## 76  control 11.396992
## 77  control 11.761978
## 78  control 14.607521
## 79  control 15.834956
## 80  control 14.996180
## 81  control 14.069052
## 82  control 17.146390
## 83  control 15.742335
## 84  control 15.341547
## 85  control 15.444329
## 86  control 15.333947
## 87  control 12.545089
## 88  control 12.983426
## 89  control 15.421303
## 90  control 15.550993
## 91  control 15.290308
## 92  control 15.238506
## 93  control 16.076253
## 94  control 13.312559
## 95  control 16.453003
## 96  control 13.149430
## 97  control 17.729357
## 98  control 14.683914
## 99  control 14.894517
## 100 control 12.523711
## 101 control 18.921422
## 102 control 18.082309
## 103 control 16.915363
## 104 control 14.130081
## 105 control 16.118337
## 106 control 15.347603
## 107 control 15.949364
## 108 control 18.091592
## 109 control 15.062235
## 110 control 19.219994
## 111 control 15.400987
## 112 control 14.584918
## 113 control 15.964938
## 114 control 13.227053
## 115 control 18.333932
## 116 control 13.110782
## 117 control 16.665698
## 118 control 15.260495
## 119 control 12.267298
## 120 control 14.961228
## 121 control 14.205271
## 122 control 11.876696
## 123 control 12.833362
## 124 control 13.433818
## 125 control 15.051387
## 126 control 14.120215
## 127 control 13.453148
## 128 control 11.612670
## 129 control 14.730655
## 130 control 14.264607
## 131 control 12.936657
## 132 control 14.912066
## 133 control 15.717910
## 134 control 10.124879
## 135 control 14.287971
## 136 control 16.077061
## 137 control 14.036332
## 138 control 14.713361
## 139 control 12.061766
## 140 control 15.052457
## 141 control 16.774622
## 142 control 16.839735
## 143 control 14.114072
## 144 control 12.897993
## 145 control 13.550470
## 146 control 19.713716
## 147 control 12.786637
## 148 control 15.838841
## 149 control 16.648208
## 150 control 13.449274
## 151 control 16.222924
## 152 control 14.493680
## 153 control 16.028821
## 154 control 15.941623
## 155 control 12.940697
## 156 control 12.894405
## 157 control 14.975036
## 158 control 14.302950
## 159 control 13.610012
## 160 control 16.842574
## 161 control 14.964099
## 162 control 17.298302
## 163 control 12.459064
## 164 control 10.760213
## 165 control 15.872903
## 166 control 14.150579
## 167 control 14.480269
## 168 control 13.130200
## 169 control 16.962933
## 170 control 18.746597
## 171 control 13.582140
## 172 control 14.716974
## 173 control 13.509258
## 174 control 12.930663
## 175 control 12.443867
## 176 control 15.868312
## 177 control 14.428133
## 178 control 13.169966
## 179 control 19.561845
## 180 control 11.434285
## 181 control 12.878539
## 182 control 14.194731
## 183 control 15.216774
## 184 control 17.539386
## 185 control 17.140165
## 186 control 12.952520
## 187 control 14.209335
## 188 control 13.995316
## 189 control 12.344480
## 190 control 16.032057
## 191 control 17.162782
## 192 control 16.468242
## 193 control 15.635439
## 194 control 16.372646
## 195 control 12.759555
## 196 control 15.292807
## 197 control 17.105736
## 198 control 18.501378
## 199 control 17.348966
## 200 control 13.745762
## 201 control 15.701799
## 202 control 15.134187
## 203 control 14.843524
## 204 control 13.112650
## 205 control 17.475101
## 206 control 14.628668
## 207 control 12.942149
## 208 control 13.406676
## 209 control 13.850052
## 210 control 18.258698
## 211 control 11.623975
## 212 control 11.933636
## 213 control 17.172744
## 214 control 13.809366
## 215 control 15.997766
## 216 control 15.403434
## 217 control 20.176128
## 218 control 16.887616
## 219 control 11.667877
## 220 control 14.488705
## 221 control 15.812213
## 222 control 13.447765
## 223 control 15.703081
## 224 control 14.158979
## 225 control 13.822084
## 226 control 13.305827
## 227 control 12.406651
## 228 control 16.556369
## 229 control 17.302010
## 230 control 14.212085
## 231 control 14.358921
## 232 control 13.132984
## 233 control 15.932946
## 234 control 11.602469
## 235 control 16.709650
## 236 control 15.627276
## 237 control 13.946508
## 238 control 14.766723
## 239 control 16.073403
## 240 control 13.121347
## 241 control 11.447691
## 242 control 17.105150
## 243 control 15.401262
## 244 control 13.794852
## 245 control 15.442127
## 246 control 17.718125
## 247 control 16.687793
## 248 control 19.231285
## 249 control 15.925147
## 250 control 15.559275
## 251 control 16.830057
## 252 control 15.671893
## 253 control 16.126708
## 254 control 15.171094
## 255 control 14.838882
## 256 control 18.312675
## 257 control 15.575711
## 258 control 14.987896
## 259 control 13.946649
## 260 control 12.525422
## 261 control 15.070050
## 262 control 14.784289
## 263 control 15.208838
## 264 control 17.452294
## 265 control 15.341537
## 266 control 14.450697
## 267 control 14.822248
## 268 control 15.318193
## 269 control 17.479394
## 270 control 15.986616
## 271 control 13.672416
## 272 control 13.789731
## 273 control 16.523560
## 274 control 17.423232
## 275 control 12.130760
## 276 control 15.086576
## 277 control 14.878881
## 278 control 16.472609
## 279 control 17.216869
## 280 control 15.240735
## 281 control 16.453615
## 282 control 14.801515
## 283 control 16.528108
## 284 control 14.104569
## 285 control 14.834100
## 286 control 16.939517
## 287 control 12.968469
## 288 control 11.415850
## 289 control 17.005871
## 290 control 14.524407
## 291 control 16.189411
## 292 control 15.806957
## 293 control 12.371307
## 294 control 12.858071
## 295 control 17.732788
## 296 control 17.524192
## 297 control 11.928853
## 298 control 14.787688
## 299 control 16.734834
## 300 control 15.140659
my_df_2 <- data.frame(X = "treatment", Y = response_2)
print(my_df_2)
##             X        Y
## 1   treatment 25.89453
## 2   treatment 24.92026
## 3   treatment 34.68626
## 4   treatment 25.91698
## 5   treatment 21.14162
## 6   treatment 17.83858
## 7   treatment 27.66674
## 8   treatment 31.76053
## 9   treatment 35.83377
## 10  treatment 37.79231
## 11  treatment 24.49962
## 12  treatment 23.84047
## 13  treatment 32.87002
## 14  treatment 28.14755
## 15  treatment 28.55412
## 16  treatment 37.18601
## 17  treatment 17.16231
## 18  treatment 30.54004
## 19  treatment 28.36019
## 20  treatment 21.83245
## 21  treatment 29.48162
## 22  treatment 29.68191
## 23  treatment 27.56628
## 24  treatment 24.39156
## 25  treatment 38.47862
## 26  treatment 18.51075
## 27  treatment 43.33400
## 28  treatment 37.05601
## 29  treatment 25.00924
## 30  treatment 22.71147
## 31  treatment 26.66828
## 32  treatment 34.08687
## 33  treatment 27.19539
## 34  treatment 30.92594
## 35  treatment 32.23904
## 36  treatment 39.65697
## 37  treatment 17.62888
## 38  treatment 25.92304
## 39  treatment 29.81455
## 40  treatment 33.51461
## 41  treatment 29.00845
## 42  treatment 30.48123
## 43  treatment 19.39456
## 44  treatment 28.93531
## 45  treatment 27.80324
## 46  treatment 36.21929
## 47  treatment 36.10386
## 48  treatment 34.42478
## 49  treatment 30.58603
## 50  treatment 26.23377
## 51  treatment 32.50748
## 52  treatment 22.25740
## 53  treatment 34.16720
## 54  treatment 40.42598
## 55  treatment 33.77019
## 56  treatment 36.40507
## 57  treatment 25.76790
## 58  treatment 17.74040
## 59  treatment 24.20601
## 60  treatment 34.52318
## 61  treatment 31.43388
## 62  treatment 33.87598
## 63  treatment 20.53913
## 64  treatment 26.02588
## 65  treatment 35.60793
## 66  treatment 38.05866
## 67  treatment 22.31195
## 68  treatment 26.51599
## 69  treatment 17.27620
## 70  treatment 22.94866
## 71  treatment 29.14389
## 72  treatment 39.78318
## 73  treatment 19.10416
## 74  treatment 40.14413
## 75  treatment 30.36407
## 76  treatment 37.97179
## 77  treatment 29.55690
## 78  treatment 38.58147
## 79  treatment 36.73548
## 80  treatment 33.15898
## 81  treatment 29.28804
## 82  treatment 36.96383
## 83  treatment 33.63071
## 84  treatment 20.58804
## 85  treatment 26.66947
## 86  treatment 29.14988
## 87  treatment 36.89028
## 88  treatment 23.31893
## 89  treatment 25.42711
## 90  treatment 27.74745
## 91  treatment 31.87686
## 92  treatment 30.46570
## 93  treatment 20.06558
## 94  treatment 22.57101
## 95  treatment 27.96268
## 96  treatment 29.26652
## 97  treatment 31.45332
## 98  treatment 30.21438
## 99  treatment 24.60379
## 100 treatment 25.58682
## 101 treatment 40.01339
## 102 treatment 25.52374
## 103 treatment 29.72107
## 104 treatment 29.20366
## 105 treatment 26.20068
## 106 treatment 36.69024
## 107 treatment 24.86382
## 108 treatment 37.33340
## 109 treatment 43.46706
## 110 treatment 37.56918
## 111 treatment 42.76017
## 112 treatment 24.39733
## 113 treatment 35.59184
## 114 treatment 40.93842
## 115 treatment 36.94259
## 116 treatment 35.59288
## 117 treatment 29.69423
## 118 treatment 24.76408
## 119 treatment 36.29383
## 120 treatment 21.48142
## 121 treatment 19.25892
## 122 treatment 27.62404
## 123 treatment 37.30926
## 124 treatment 32.49803
## 125 treatment 38.66776
## 126 treatment 32.77891
## 127 treatment 29.20542
## 128 treatment 34.86763
## 129 treatment 24.49568
## 130 treatment 32.22441
## 131 treatment 20.31189
## 132 treatment 23.03071
## 133 treatment 42.40666
## 134 treatment 15.50958
## 135 treatment 35.88186
## 136 treatment 38.49831
## 137 treatment 43.48124
## 138 treatment 32.19931
## 139 treatment 27.80884
## 140 treatment 37.09524
## 141 treatment 36.55542
## 142 treatment 40.90015
## 143 treatment 24.94328
## 144 treatment 19.98640
## 145 treatment 20.78478
## 146 treatment 27.52169
## 147 treatment 32.26071
## 148 treatment 26.34566
## 149 treatment 39.25019
## 150 treatment 33.16840
## 151 treatment 29.92957
## 152 treatment 34.98952
## 153 treatment 43.93749
## 154 treatment 37.94843
## 155 treatment 22.32505
## 156 treatment 15.88186
## 157 treatment 25.64221
## 158 treatment 28.93507
## 159 treatment 12.20247
## 160 treatment 40.90000
## 161 treatment 20.95767
## 162 treatment 28.49283
## 163 treatment 29.70239
## 164 treatment 18.53235
## 165 treatment 16.88437
## 166 treatment 25.55463
## 167 treatment 17.04118
## 168 treatment 29.54966
## 169 treatment 46.01936
## 170 treatment 34.14883
## 171 treatment 35.19340
## 172 treatment 17.79502
## 173 treatment 25.29602
## 174 treatment 14.31116
## 175 treatment 26.15703
## 176 treatment 32.96896
## 177 treatment 21.67325
## 178 treatment 35.73604
## 179 treatment 35.47398
## 180 treatment 26.25196
## 181 treatment 43.29784
## 182 treatment 33.07070
## 183 treatment 38.12227
## 184 treatment 42.41291
## 185 treatment 26.06957
## 186 treatment 30.69144
## 187 treatment 32.84042
## 188 treatment 34.70023
## 189 treatment 34.69487
## 190 treatment 31.21848
## 191 treatment 42.17385
## 192 treatment 28.25372
## 193 treatment 42.58303
## 194 treatment 31.51616
## 195 treatment 24.20260
## 196 treatment 26.44154
## 197 treatment 30.71037
## 198 treatment 32.45346
## 199 treatment 29.72875
## 200 treatment 27.03129
## 201 treatment 32.10095
## 202 treatment 34.84873
## 203 treatment 22.69028
## 204 treatment 25.57455
## 205 treatment 23.23676
## 206 treatment 32.06075
## 207 treatment 35.81862
## 208 treatment 31.90711
## 209 treatment 33.27452
## 210 treatment 43.57338
## 211 treatment 30.66072
## 212 treatment 30.77189
## 213 treatment 48.46094
## 214 treatment 26.92072
## 215 treatment 32.54964
## 216 treatment 17.35557
## 217 treatment 44.00053
## 218 treatment 24.63712
## 219 treatment 31.86493
## 220 treatment 20.67622
## 221 treatment 16.20475
## 222 treatment 32.11259
## 223 treatment 22.29361
## 224 treatment 28.97514
## 225 treatment 31.30704
## 226 treatment 16.52182
## 227 treatment 23.93700
## 228 treatment 29.57401
## 229 treatment 27.77936
## 230 treatment 30.40883
## 231 treatment 36.99655
## 232 treatment 29.42256
## 233 treatment 22.41756
## 234 treatment 25.98986
## 235 treatment 37.19901
## 236 treatment 25.85200
## 237 treatment 23.82268
## 238 treatment 29.82229
## 239 treatment 26.24772
## 240 treatment 25.40924
## 241 treatment 28.19010
## 242 treatment 20.78238
## 243 treatment 38.96163
## 244 treatment 30.72340
## 245 treatment 34.36949
## 246 treatment 30.15540
## 247 treatment 26.65466
## 248 treatment 33.58054
## 249 treatment 28.76809
## 250 treatment 18.49660
## 251 treatment 31.33069
## 252 treatment 37.02710
## 253 treatment 36.29702
## 254 treatment 27.18876
## 255 treatment 24.68236
## 256 treatment 32.05999
## 257 treatment 29.25286
## 258 treatment 18.15099
## 259 treatment 33.52195
## 260 treatment 28.99616
## 261 treatment 31.53082
## 262 treatment 23.40189
## 263 treatment 42.90851
## 264 treatment 23.30414
## 265 treatment 23.80968
## 266 treatment 19.86736
## 267 treatment 32.37340
## 268 treatment 23.88552
## 269 treatment 20.33823
## 270 treatment 35.19574
## 271 treatment 29.87279
## 272 treatment 36.16131
## 273 treatment 39.13640
## 274 treatment 26.98761
## 275 treatment 37.29063
## 276 treatment 40.31162
## 277 treatment 34.20356
## 278 treatment 24.70889
## 279 treatment 37.18728
## 280 treatment 20.84999
## 281 treatment 19.38851
## 282 treatment 23.38274
## 283 treatment 35.59863
## 284 treatment 29.23338
## 285 treatment 18.84662
## 286 treatment 30.81085
## 287 treatment 26.73939
## 288 treatment 26.62999
## 289 treatment 32.35022
## 290 treatment 25.47829
## 291 treatment 34.60555
## 292 treatment 18.26799
## 293 treatment 35.02056
## 294 treatment 26.30927
## 295 treatment 44.72694
## 296 treatment 20.05315
## 297 treatment 27.58404
## 298 treatment 36.54715
## 299 treatment 45.14242
## 300 treatment 30.28634
my_df <- rbind(my_df_1, my_df_2)
print(my_df)
##             X         Y
## 1     control 15.845688
## 2     control 13.766000
## 3     control 12.188043
## 4     control 17.966621
## 5     control 12.663302
## 6     control 13.040924
## 7     control 13.845013
## 8     control 13.394905
## 9     control 12.566985
## 10    control 17.886414
## 11    control 12.443099
## 12    control 10.977315
## 13    control 14.441809
## 14    control 11.278168
## 15    control 18.102612
## 16    control 10.966307
## 17    control 14.888301
## 18    control 15.130296
## 19    control 17.832455
## 20    control 18.476672
## 21    control 13.714718
## 22    control 11.699349
## 23    control 14.898118
## 24    control 16.335622
## 25    control 15.597334
## 26    control 15.040780
## 27    control 12.497739
## 28    control 10.899829
## 29    control 16.251294
## 30    control 14.041026
## 31    control 19.549825
## 32    control 13.741472
## 33    control 15.986247
## 34    control 16.841466
## 35    control 14.275580
## 36    control 13.701906
## 37    control 17.220681
## 38    control 16.104756
## 39    control 13.933853
## 40    control 14.015272
## 41    control 15.119835
## 42    control 12.454858
## 43    control 14.214331
## 44    control 13.378400
## 45    control 17.109698
## 46    control 15.347842
## 47    control 14.876872
## 48    control 17.796956
## 49    control 16.193227
## 50    control 13.200817
## 51    control 12.892231
## 52    control 17.389278
## 53    control 18.237272
## 54    control  9.244281
## 55    control 17.564843
## 56    control 14.005173
## 57    control 17.344672
## 58    control 17.264653
## 59    control 20.175136
## 60    control 12.937925
## 61    control 17.155325
## 62    control 14.819020
## 63    control 16.481670
## 64    control 15.117832
## 65    control 16.668905
## 66    control 17.420302
## 67    control 17.480279
## 68    control 14.911423
## 69    control 14.906576
## 70    control 17.452756
## 71    control 17.839417
## 72    control 15.271438
## 73    control 11.875446
## 74    control 14.590054
## 75    control 15.460106
## 76    control 11.396992
## 77    control 11.761978
## 78    control 14.607521
## 79    control 15.834956
## 80    control 14.996180
## 81    control 14.069052
## 82    control 17.146390
## 83    control 15.742335
## 84    control 15.341547
## 85    control 15.444329
## 86    control 15.333947
## 87    control 12.545089
## 88    control 12.983426
## 89    control 15.421303
## 90    control 15.550993
## 91    control 15.290308
## 92    control 15.238506
## 93    control 16.076253
## 94    control 13.312559
## 95    control 16.453003
## 96    control 13.149430
## 97    control 17.729357
## 98    control 14.683914
## 99    control 14.894517
## 100   control 12.523711
## 101   control 18.921422
## 102   control 18.082309
## 103   control 16.915363
## 104   control 14.130081
## 105   control 16.118337
## 106   control 15.347603
## 107   control 15.949364
## 108   control 18.091592
## 109   control 15.062235
## 110   control 19.219994
## 111   control 15.400987
## 112   control 14.584918
## 113   control 15.964938
## 114   control 13.227053
## 115   control 18.333932
## 116   control 13.110782
## 117   control 16.665698
## 118   control 15.260495
## 119   control 12.267298
## 120   control 14.961228
## 121   control 14.205271
## 122   control 11.876696
## 123   control 12.833362
## 124   control 13.433818
## 125   control 15.051387
## 126   control 14.120215
## 127   control 13.453148
## 128   control 11.612670
## 129   control 14.730655
## 130   control 14.264607
## 131   control 12.936657
## 132   control 14.912066
## 133   control 15.717910
## 134   control 10.124879
## 135   control 14.287971
## 136   control 16.077061
## 137   control 14.036332
## 138   control 14.713361
## 139   control 12.061766
## 140   control 15.052457
## 141   control 16.774622
## 142   control 16.839735
## 143   control 14.114072
## 144   control 12.897993
## 145   control 13.550470
## 146   control 19.713716
## 147   control 12.786637
## 148   control 15.838841
## 149   control 16.648208
## 150   control 13.449274
## 151   control 16.222924
## 152   control 14.493680
## 153   control 16.028821
## 154   control 15.941623
## 155   control 12.940697
## 156   control 12.894405
## 157   control 14.975036
## 158   control 14.302950
## 159   control 13.610012
## 160   control 16.842574
## 161   control 14.964099
## 162   control 17.298302
## 163   control 12.459064
## 164   control 10.760213
## 165   control 15.872903
## 166   control 14.150579
## 167   control 14.480269
## 168   control 13.130200
## 169   control 16.962933
## 170   control 18.746597
## 171   control 13.582140
## 172   control 14.716974
## 173   control 13.509258
## 174   control 12.930663
## 175   control 12.443867
## 176   control 15.868312
## 177   control 14.428133
## 178   control 13.169966
## 179   control 19.561845
## 180   control 11.434285
## 181   control 12.878539
## 182   control 14.194731
## 183   control 15.216774
## 184   control 17.539386
## 185   control 17.140165
## 186   control 12.952520
## 187   control 14.209335
## 188   control 13.995316
## 189   control 12.344480
## 190   control 16.032057
## 191   control 17.162782
## 192   control 16.468242
## 193   control 15.635439
## 194   control 16.372646
## 195   control 12.759555
## 196   control 15.292807
## 197   control 17.105736
## 198   control 18.501378
## 199   control 17.348966
## 200   control 13.745762
## 201   control 15.701799
## 202   control 15.134187
## 203   control 14.843524
## 204   control 13.112650
## 205   control 17.475101
## 206   control 14.628668
## 207   control 12.942149
## 208   control 13.406676
## 209   control 13.850052
## 210   control 18.258698
## 211   control 11.623975
## 212   control 11.933636
## 213   control 17.172744
## 214   control 13.809366
## 215   control 15.997766
## 216   control 15.403434
## 217   control 20.176128
## 218   control 16.887616
## 219   control 11.667877
## 220   control 14.488705
## 221   control 15.812213
## 222   control 13.447765
## 223   control 15.703081
## 224   control 14.158979
## 225   control 13.822084
## 226   control 13.305827
## 227   control 12.406651
## 228   control 16.556369
## 229   control 17.302010
## 230   control 14.212085
## 231   control 14.358921
## 232   control 13.132984
## 233   control 15.932946
## 234   control 11.602469
## 235   control 16.709650
## 236   control 15.627276
## 237   control 13.946508
## 238   control 14.766723
## 239   control 16.073403
## 240   control 13.121347
## 241   control 11.447691
## 242   control 17.105150
## 243   control 15.401262
## 244   control 13.794852
## 245   control 15.442127
## 246   control 17.718125
## 247   control 16.687793
## 248   control 19.231285
## 249   control 15.925147
## 250   control 15.559275
## 251   control 16.830057
## 252   control 15.671893
## 253   control 16.126708
## 254   control 15.171094
## 255   control 14.838882
## 256   control 18.312675
## 257   control 15.575711
## 258   control 14.987896
## 259   control 13.946649
## 260   control 12.525422
## 261   control 15.070050
## 262   control 14.784289
## 263   control 15.208838
## 264   control 17.452294
## 265   control 15.341537
## 266   control 14.450697
## 267   control 14.822248
## 268   control 15.318193
## 269   control 17.479394
## 270   control 15.986616
## 271   control 13.672416
## 272   control 13.789731
## 273   control 16.523560
## 274   control 17.423232
## 275   control 12.130760
## 276   control 15.086576
## 277   control 14.878881
## 278   control 16.472609
## 279   control 17.216869
## 280   control 15.240735
## 281   control 16.453615
## 282   control 14.801515
## 283   control 16.528108
## 284   control 14.104569
## 285   control 14.834100
## 286   control 16.939517
## 287   control 12.968469
## 288   control 11.415850
## 289   control 17.005871
## 290   control 14.524407
## 291   control 16.189411
## 292   control 15.806957
## 293   control 12.371307
## 294   control 12.858071
## 295   control 17.732788
## 296   control 17.524192
## 297   control 11.928853
## 298   control 14.787688
## 299   control 16.734834
## 300   control 15.140659
## 301 treatment 25.894526
## 302 treatment 24.920255
## 303 treatment 34.686257
## 304 treatment 25.916978
## 305 treatment 21.141617
## 306 treatment 17.838576
## 307 treatment 27.666736
## 308 treatment 31.760529
## 309 treatment 35.833766
## 310 treatment 37.792308
## 311 treatment 24.499617
## 312 treatment 23.840472
## 313 treatment 32.870018
## 314 treatment 28.147551
## 315 treatment 28.554125
## 316 treatment 37.186008
## 317 treatment 17.162309
## 318 treatment 30.540040
## 319 treatment 28.360193
## 320 treatment 21.832450
## 321 treatment 29.481620
## 322 treatment 29.681913
## 323 treatment 27.566282
## 324 treatment 24.391555
## 325 treatment 38.478624
## 326 treatment 18.510751
## 327 treatment 43.333995
## 328 treatment 37.056011
## 329 treatment 25.009245
## 330 treatment 22.711475
## 331 treatment 26.668279
## 332 treatment 34.086875
## 333 treatment 27.195386
## 334 treatment 30.925941
## 335 treatment 32.239041
## 336 treatment 39.656975
## 337 treatment 17.628881
## 338 treatment 25.923044
## 339 treatment 29.814555
## 340 treatment 33.514608
## 341 treatment 29.008446
## 342 treatment 30.481225
## 343 treatment 19.394564
## 344 treatment 28.935306
## 345 treatment 27.803241
## 346 treatment 36.219287
## 347 treatment 36.103865
## 348 treatment 34.424783
## 349 treatment 30.586028
## 350 treatment 26.233766
## 351 treatment 32.507476
## 352 treatment 22.257399
## 353 treatment 34.167195
## 354 treatment 40.425979
## 355 treatment 33.770186
## 356 treatment 36.405067
## 357 treatment 25.767899
## 358 treatment 17.740397
## 359 treatment 24.206013
## 360 treatment 34.523184
## 361 treatment 31.433882
## 362 treatment 33.875975
## 363 treatment 20.539134
## 364 treatment 26.025883
## 365 treatment 35.607928
## 366 treatment 38.058662
## 367 treatment 22.311954
## 368 treatment 26.515989
## 369 treatment 17.276204
## 370 treatment 22.948658
## 371 treatment 29.143888
## 372 treatment 39.783183
## 373 treatment 19.104162
## 374 treatment 40.144134
## 375 treatment 30.364071
## 376 treatment 37.971794
## 377 treatment 29.556905
## 378 treatment 38.581471
## 379 treatment 36.735478
## 380 treatment 33.158977
## 381 treatment 29.288039
## 382 treatment 36.963828
## 383 treatment 33.630715
## 384 treatment 20.588039
## 385 treatment 26.669472
## 386 treatment 29.149881
## 387 treatment 36.890275
## 388 treatment 23.318934
## 389 treatment 25.427109
## 390 treatment 27.747449
## 391 treatment 31.876863
## 392 treatment 30.465696
## 393 treatment 20.065578
## 394 treatment 22.571007
## 395 treatment 27.962676
## 396 treatment 29.266517
## 397 treatment 31.453323
## 398 treatment 30.214383
## 399 treatment 24.603789
## 400 treatment 25.586819
## 401 treatment 40.013391
## 402 treatment 25.523736
## 403 treatment 29.721066
## 404 treatment 29.203660
## 405 treatment 26.200684
## 406 treatment 36.690242
## 407 treatment 24.863819
## 408 treatment 37.333402
## 409 treatment 43.467056
## 410 treatment 37.569179
## 411 treatment 42.760169
## 412 treatment 24.397331
## 413 treatment 35.591842
## 414 treatment 40.938416
## 415 treatment 36.942595
## 416 treatment 35.592881
## 417 treatment 29.694233
## 418 treatment 24.764080
## 419 treatment 36.293827
## 420 treatment 21.481415
## 421 treatment 19.258915
## 422 treatment 27.624038
## 423 treatment 37.309261
## 424 treatment 32.498028
## 425 treatment 38.667760
## 426 treatment 32.778905
## 427 treatment 29.205418
## 428 treatment 34.867632
## 429 treatment 24.495678
## 430 treatment 32.224408
## 431 treatment 20.311886
## 432 treatment 23.030707
## 433 treatment 42.406663
## 434 treatment 15.509583
## 435 treatment 35.881860
## 436 treatment 38.498315
## 437 treatment 43.481237
## 438 treatment 32.199310
## 439 treatment 27.808835
## 440 treatment 37.095241
## 441 treatment 36.555421
## 442 treatment 40.900149
## 443 treatment 24.943278
## 444 treatment 19.986399
## 445 treatment 20.784781
## 446 treatment 27.521688
## 447 treatment 32.260706
## 448 treatment 26.345663
## 449 treatment 39.250194
## 450 treatment 33.168403
## 451 treatment 29.929568
## 452 treatment 34.989516
## 453 treatment 43.937488
## 454 treatment 37.948429
## 455 treatment 22.325051
## 456 treatment 15.881863
## 457 treatment 25.642210
## 458 treatment 28.935070
## 459 treatment 12.202467
## 460 treatment 40.899999
## 461 treatment 20.957674
## 462 treatment 28.492831
## 463 treatment 29.702394
## 464 treatment 18.532354
## 465 treatment 16.884368
## 466 treatment 25.554635
## 467 treatment 17.041179
## 468 treatment 29.549665
## 469 treatment 46.019362
## 470 treatment 34.148831
## 471 treatment 35.193402
## 472 treatment 17.795024
## 473 treatment 25.296017
## 474 treatment 14.311156
## 475 treatment 26.157030
## 476 treatment 32.968965
## 477 treatment 21.673246
## 478 treatment 35.736038
## 479 treatment 35.473980
## 480 treatment 26.251957
## 481 treatment 43.297839
## 482 treatment 33.070705
## 483 treatment 38.122267
## 484 treatment 42.412910
## 485 treatment 26.069571
## 486 treatment 30.691440
## 487 treatment 32.840423
## 488 treatment 34.700230
## 489 treatment 34.694869
## 490 treatment 31.218481
## 491 treatment 42.173845
## 492 treatment 28.253724
## 493 treatment 42.583032
## 494 treatment 31.516156
## 495 treatment 24.202601
## 496 treatment 26.441545
## 497 treatment 30.710370
## 498 treatment 32.453459
## 499 treatment 29.728746
## 500 treatment 27.031286
## 501 treatment 32.100954
## 502 treatment 34.848731
## 503 treatment 22.690277
## 504 treatment 25.574550
## 505 treatment 23.236761
## 506 treatment 32.060752
## 507 treatment 35.818621
## 508 treatment 31.907105
## 509 treatment 33.274516
## 510 treatment 43.573382
## 511 treatment 30.660719
## 512 treatment 30.771890
## 513 treatment 48.460942
## 514 treatment 26.920722
## 515 treatment 32.549645
## 516 treatment 17.355575
## 517 treatment 44.000534
## 518 treatment 24.637121
## 519 treatment 31.864932
## 520 treatment 20.676224
## 521 treatment 16.204749
## 522 treatment 32.112587
## 523 treatment 22.293610
## 524 treatment 28.975136
## 525 treatment 31.307041
## 526 treatment 16.521825
## 527 treatment 23.937000
## 528 treatment 29.574014
## 529 treatment 27.779359
## 530 treatment 30.408828
## 531 treatment 36.996551
## 532 treatment 29.422563
## 533 treatment 22.417559
## 534 treatment 25.989856
## 535 treatment 37.199010
## 536 treatment 25.851996
## 537 treatment 23.822677
## 538 treatment 29.822293
## 539 treatment 26.247723
## 540 treatment 25.409238
## 541 treatment 28.190096
## 542 treatment 20.782381
## 543 treatment 38.961630
## 544 treatment 30.723402
## 545 treatment 34.369490
## 546 treatment 30.155403
## 547 treatment 26.654658
## 548 treatment 33.580542
## 549 treatment 28.768088
## 550 treatment 18.496601
## 551 treatment 31.330693
## 552 treatment 37.027102
## 553 treatment 36.297017
## 554 treatment 27.188764
## 555 treatment 24.682357
## 556 treatment 32.059985
## 557 treatment 29.252858
## 558 treatment 18.150989
## 559 treatment 33.521946
## 560 treatment 28.996158
## 561 treatment 31.530821
## 562 treatment 23.401889
## 563 treatment 42.908508
## 564 treatment 23.304142
## 565 treatment 23.809678
## 566 treatment 19.867358
## 567 treatment 32.373402
## 568 treatment 23.885518
## 569 treatment 20.338229
## 570 treatment 35.195743
## 571 treatment 29.872787
## 572 treatment 36.161313
## 573 treatment 39.136398
## 574 treatment 26.987611
## 575 treatment 37.290625
## 576 treatment 40.311617
## 577 treatment 34.203558
## 578 treatment 24.708893
## 579 treatment 37.187277
## 580 treatment 20.849990
## 581 treatment 19.388506
## 582 treatment 23.382737
## 583 treatment 35.598628
## 584 treatment 29.233385
## 585 treatment 18.846621
## 586 treatment 30.810850
## 587 treatment 26.739392
## 588 treatment 26.629992
## 589 treatment 32.350222
## 590 treatment 25.478290
## 591 treatment 34.605547
## 592 treatment 18.267986
## 593 treatment 35.020558
## 594 treatment 26.309274
## 595 treatment 44.726935
## 596 treatment 20.053151
## 597 treatment 27.584036
## 598 treatment 36.547154
## 599 treatment 45.142419
## 600 treatment 30.286337
anova_data <- aov(Y ~ X, data = my_df)
summary_sample <- summary(anova_data)
print(summary_sample[[1]]$`Pr(>F)`)
## [1] 2.678334e-148            NA
library(ggplot2)
plot <- ggplot(my_df, aes(X, Y)) + geom_boxplot() + labs(x="Conditions",y="Responses")
print(plot)

For Loop Generation- ADJUSTING MEAN

n <- sample(1:30)
for (i in 1:length(n)) {
  print(n[i])
}
## [1] 12
## [1] 8
## [1] 14
## [1] 6
## [1] 9
## [1] 17
## [1] 19
## [1] 11
## [1] 27
## [1] 28
## [1] 23
## [1] 2
## [1] 29
## [1] 24
## [1] 18
## [1] 30
## [1] 20
## [1] 13
## [1] 3
## [1] 10
## [1] 4
## [1] 21
## [1] 7
## [1] 25
## [1] 15
## [1] 1
## [1] 22
## [1] 5
## [1] 26
## [1] 16
response_1 <- rnorm(n=100, mean=n[i], sd=2)
print(response_1)
##   [1] 17.61692 18.46981 17.11628 19.80558 16.42222 12.17957 17.26978 15.10324
##   [9] 19.06547 13.32795 16.96309 14.37838 15.37587 18.39971 16.39289 17.96367
##  [17] 14.27406 18.59266 16.57942 17.29195 17.39853 14.92046 16.48631 17.39675
##  [25] 20.48032 18.57065 13.85433 17.49555 12.80169 13.64306 14.77144 14.90588
##  [33] 16.92302 15.48075 14.52751 14.09960 17.55531 14.10718 13.49758 17.94983
##  [41] 17.01531 16.30560 16.38550 18.68561 14.78138 15.32671 13.72223 15.43056
##  [49] 14.60453 13.78894 16.29691 13.71463 14.76980 17.51265 16.12281 14.32702
##  [57] 15.71722 15.45591 18.24051 16.24046 14.90883 17.02449 16.22680 15.81487
##  [65] 13.81055 16.63504 16.33768 15.45506 15.26765 14.42677 22.35185 13.69735
##  [73] 17.43543 14.80332 13.52742 16.31844 13.70325 17.83799 15.80519 15.20064
##  [81] 13.63799 13.64008 15.62857 16.35773 16.19322 15.20526 14.98333 15.18831
##  [89] 15.09865 14.07838 16.31554 20.87167 12.99436 14.95166 18.90056 17.72867
##  [97] 17.31748 19.88952 19.15975 14.19863
response_2 <- rnorm(n=100, mean=n[i], sd=7)
print(response_2)
##   [1] 20.3667399 20.3583929 16.0301868  5.4554528  9.2407547 11.5318830
##   [7] 17.1211618 25.0101646  5.5174405 16.6542103 16.1552516  2.0643382
##  [13] 14.8069486  5.8273879 17.9087280  7.2697816  5.5614481  9.8818461
##  [19] 18.6778972 14.1493212 16.0693042 10.3169826 14.2517687  5.3357894
##  [25] 22.6417296 20.9028146 17.7202790 18.0757767 15.3307569 29.1137720
##  [31] 12.4469805 24.6009010 14.2806556 22.7270245 14.1131810 20.1843970
##  [37] 21.2313407 21.0127188 30.2259176 17.2148937 25.5510679  8.1309081
##  [43] 17.9284178 17.2913339 14.7239836 15.6996375 12.9650402 22.5567708
##  [49] 24.3036862 13.9290043  9.3468618 16.8660294 20.9253162 18.4279350
##  [55] 13.4590378  2.4246287 23.7142324 28.0552884 14.5913579  8.9751751
##  [61] 11.4379172 15.3653356 14.2065492 16.4341157 13.7895550  7.6918553
##  [67] 29.2233288 19.3561171 24.4658499 13.7283007 16.6777588 13.4056996
##  [73]  6.3259507 24.6013025 12.6684882 11.7784025  7.9001430 17.8023647
##  [79] 22.5153657 21.9680551  9.8420275 10.3889482 11.9031010 19.3273151
##  [85] 18.8137475 22.9455850 15.5130763 10.0521090 13.7751353 25.3168298
##  [91]  3.2095080 11.6981525 18.8224487  9.6480980 14.8117302 14.7454995
##  [97]  0.4907624 12.1243269  8.5487461 12.2985541
response <- c(response_1, response_2)

my_df_1 <- data.frame (X = "control", Y= response_1)
print(my_df_1)
##           X        Y
## 1   control 17.61692
## 2   control 18.46981
## 3   control 17.11628
## 4   control 19.80558
## 5   control 16.42222
## 6   control 12.17957
## 7   control 17.26978
## 8   control 15.10324
## 9   control 19.06547
## 10  control 13.32795
## 11  control 16.96309
## 12  control 14.37838
## 13  control 15.37587
## 14  control 18.39971
## 15  control 16.39289
## 16  control 17.96367
## 17  control 14.27406
## 18  control 18.59266
## 19  control 16.57942
## 20  control 17.29195
## 21  control 17.39853
## 22  control 14.92046
## 23  control 16.48631
## 24  control 17.39675
## 25  control 20.48032
## 26  control 18.57065
## 27  control 13.85433
## 28  control 17.49555
## 29  control 12.80169
## 30  control 13.64306
## 31  control 14.77144
## 32  control 14.90588
## 33  control 16.92302
## 34  control 15.48075
## 35  control 14.52751
## 36  control 14.09960
## 37  control 17.55531
## 38  control 14.10718
## 39  control 13.49758
## 40  control 17.94983
## 41  control 17.01531
## 42  control 16.30560
## 43  control 16.38550
## 44  control 18.68561
## 45  control 14.78138
## 46  control 15.32671
## 47  control 13.72223
## 48  control 15.43056
## 49  control 14.60453
## 50  control 13.78894
## 51  control 16.29691
## 52  control 13.71463
## 53  control 14.76980
## 54  control 17.51265
## 55  control 16.12281
## 56  control 14.32702
## 57  control 15.71722
## 58  control 15.45591
## 59  control 18.24051
## 60  control 16.24046
## 61  control 14.90883
## 62  control 17.02449
## 63  control 16.22680
## 64  control 15.81487
## 65  control 13.81055
## 66  control 16.63504
## 67  control 16.33768
## 68  control 15.45506
## 69  control 15.26765
## 70  control 14.42677
## 71  control 22.35185
## 72  control 13.69735
## 73  control 17.43543
## 74  control 14.80332
## 75  control 13.52742
## 76  control 16.31844
## 77  control 13.70325
## 78  control 17.83799
## 79  control 15.80519
## 80  control 15.20064
## 81  control 13.63799
## 82  control 13.64008
## 83  control 15.62857
## 84  control 16.35773
## 85  control 16.19322
## 86  control 15.20526
## 87  control 14.98333
## 88  control 15.18831
## 89  control 15.09865
## 90  control 14.07838
## 91  control 16.31554
## 92  control 20.87167
## 93  control 12.99436
## 94  control 14.95166
## 95  control 18.90056
## 96  control 17.72867
## 97  control 17.31748
## 98  control 19.88952
## 99  control 19.15975
## 100 control 14.19863
my_df_2 <- data.frame(X = "treatment", Y = response_2)
print(my_df_2)
##             X          Y
## 1   treatment 20.3667399
## 2   treatment 20.3583929
## 3   treatment 16.0301868
## 4   treatment  5.4554528
## 5   treatment  9.2407547
## 6   treatment 11.5318830
## 7   treatment 17.1211618
## 8   treatment 25.0101646
## 9   treatment  5.5174405
## 10  treatment 16.6542103
## 11  treatment 16.1552516
## 12  treatment  2.0643382
## 13  treatment 14.8069486
## 14  treatment  5.8273879
## 15  treatment 17.9087280
## 16  treatment  7.2697816
## 17  treatment  5.5614481
## 18  treatment  9.8818461
## 19  treatment 18.6778972
## 20  treatment 14.1493212
## 21  treatment 16.0693042
## 22  treatment 10.3169826
## 23  treatment 14.2517687
## 24  treatment  5.3357894
## 25  treatment 22.6417296
## 26  treatment 20.9028146
## 27  treatment 17.7202790
## 28  treatment 18.0757767
## 29  treatment 15.3307569
## 30  treatment 29.1137720
## 31  treatment 12.4469805
## 32  treatment 24.6009010
## 33  treatment 14.2806556
## 34  treatment 22.7270245
## 35  treatment 14.1131810
## 36  treatment 20.1843970
## 37  treatment 21.2313407
## 38  treatment 21.0127188
## 39  treatment 30.2259176
## 40  treatment 17.2148937
## 41  treatment 25.5510679
## 42  treatment  8.1309081
## 43  treatment 17.9284178
## 44  treatment 17.2913339
## 45  treatment 14.7239836
## 46  treatment 15.6996375
## 47  treatment 12.9650402
## 48  treatment 22.5567708
## 49  treatment 24.3036862
## 50  treatment 13.9290043
## 51  treatment  9.3468618
## 52  treatment 16.8660294
## 53  treatment 20.9253162
## 54  treatment 18.4279350
## 55  treatment 13.4590378
## 56  treatment  2.4246287
## 57  treatment 23.7142324
## 58  treatment 28.0552884
## 59  treatment 14.5913579
## 60  treatment  8.9751751
## 61  treatment 11.4379172
## 62  treatment 15.3653356
## 63  treatment 14.2065492
## 64  treatment 16.4341157
## 65  treatment 13.7895550
## 66  treatment  7.6918553
## 67  treatment 29.2233288
## 68  treatment 19.3561171
## 69  treatment 24.4658499
## 70  treatment 13.7283007
## 71  treatment 16.6777588
## 72  treatment 13.4056996
## 73  treatment  6.3259507
## 74  treatment 24.6013025
## 75  treatment 12.6684882
## 76  treatment 11.7784025
## 77  treatment  7.9001430
## 78  treatment 17.8023647
## 79  treatment 22.5153657
## 80  treatment 21.9680551
## 81  treatment  9.8420275
## 82  treatment 10.3889482
## 83  treatment 11.9031010
## 84  treatment 19.3273151
## 85  treatment 18.8137475
## 86  treatment 22.9455850
## 87  treatment 15.5130763
## 88  treatment 10.0521090
## 89  treatment 13.7751353
## 90  treatment 25.3168298
## 91  treatment  3.2095080
## 92  treatment 11.6981525
## 93  treatment 18.8224487
## 94  treatment  9.6480980
## 95  treatment 14.8117302
## 96  treatment 14.7454995
## 97  treatment  0.4907624
## 98  treatment 12.1243269
## 99  treatment  8.5487461
## 100 treatment 12.2985541
my_df <- rbind(my_df_1, my_df_2)
print(my_df)
##             X          Y
## 1     control 17.6169168
## 2     control 18.4698122
## 3     control 17.1162830
## 4     control 19.8055785
## 5     control 16.4222214
## 6     control 12.1795697
## 7     control 17.2697781
## 8     control 15.1032432
## 9     control 19.0654669
## 10    control 13.3279527
## 11    control 16.9630918
## 12    control 14.3783849
## 13    control 15.3758659
## 14    control 18.3997091
## 15    control 16.3928887
## 16    control 17.9636667
## 17    control 14.2740648
## 18    control 18.5926633
## 19    control 16.5794241
## 20    control 17.2919465
## 21    control 17.3985318
## 22    control 14.9204615
## 23    control 16.4863090
## 24    control 17.3967459
## 25    control 20.4803222
## 26    control 18.5706501
## 27    control 13.8543294
## 28    control 17.4955524
## 29    control 12.8016882
## 30    control 13.6430569
## 31    control 14.7714366
## 32    control 14.9058771
## 33    control 16.9230168
## 34    control 15.4807453
## 35    control 14.5275130
## 36    control 14.0995957
## 37    control 17.5553141
## 38    control 14.1071791
## 39    control 13.4975816
## 40    control 17.9498329
## 41    control 17.0153078
## 42    control 16.3055994
## 43    control 16.3854963
## 44    control 18.6856113
## 45    control 14.7813759
## 46    control 15.3267119
## 47    control 13.7222328
## 48    control 15.4305582
## 49    control 14.6045261
## 50    control 13.7889390
## 51    control 16.2969053
## 52    control 13.7146323
## 53    control 14.7697959
## 54    control 17.5126458
## 55    control 16.1228138
## 56    control 14.3270219
## 57    control 15.7172192
## 58    control 15.4559131
## 59    control 18.2405058
## 60    control 16.2404622
## 61    control 14.9088279
## 62    control 17.0244909
## 63    control 16.2268006
## 64    control 15.8148748
## 65    control 13.8105519
## 66    control 16.6350431
## 67    control 16.3376796
## 68    control 15.4550606
## 69    control 15.2676512
## 70    control 14.4267739
## 71    control 22.3518472
## 72    control 13.6973452
## 73    control 17.4354345
## 74    control 14.8033217
## 75    control 13.5274171
## 76    control 16.3184399
## 77    control 13.7032544
## 78    control 17.8379901
## 79    control 15.8051878
## 80    control 15.2006388
## 81    control 13.6379873
## 82    control 13.6400794
## 83    control 15.6285664
## 84    control 16.3577253
## 85    control 16.1932201
## 86    control 15.2052642
## 87    control 14.9833296
## 88    control 15.1883063
## 89    control 15.0986505
## 90    control 14.0783813
## 91    control 16.3155375
## 92    control 20.8716700
## 93    control 12.9943597
## 94    control 14.9516629
## 95    control 18.9005613
## 96    control 17.7286713
## 97    control 17.3174781
## 98    control 19.8895232
## 99    control 19.1597474
## 100   control 14.1986280
## 101 treatment 20.3667399
## 102 treatment 20.3583929
## 103 treatment 16.0301868
## 104 treatment  5.4554528
## 105 treatment  9.2407547
## 106 treatment 11.5318830
## 107 treatment 17.1211618
## 108 treatment 25.0101646
## 109 treatment  5.5174405
## 110 treatment 16.6542103
## 111 treatment 16.1552516
## 112 treatment  2.0643382
## 113 treatment 14.8069486
## 114 treatment  5.8273879
## 115 treatment 17.9087280
## 116 treatment  7.2697816
## 117 treatment  5.5614481
## 118 treatment  9.8818461
## 119 treatment 18.6778972
## 120 treatment 14.1493212
## 121 treatment 16.0693042
## 122 treatment 10.3169826
## 123 treatment 14.2517687
## 124 treatment  5.3357894
## 125 treatment 22.6417296
## 126 treatment 20.9028146
## 127 treatment 17.7202790
## 128 treatment 18.0757767
## 129 treatment 15.3307569
## 130 treatment 29.1137720
## 131 treatment 12.4469805
## 132 treatment 24.6009010
## 133 treatment 14.2806556
## 134 treatment 22.7270245
## 135 treatment 14.1131810
## 136 treatment 20.1843970
## 137 treatment 21.2313407
## 138 treatment 21.0127188
## 139 treatment 30.2259176
## 140 treatment 17.2148937
## 141 treatment 25.5510679
## 142 treatment  8.1309081
## 143 treatment 17.9284178
## 144 treatment 17.2913339
## 145 treatment 14.7239836
## 146 treatment 15.6996375
## 147 treatment 12.9650402
## 148 treatment 22.5567708
## 149 treatment 24.3036862
## 150 treatment 13.9290043
## 151 treatment  9.3468618
## 152 treatment 16.8660294
## 153 treatment 20.9253162
## 154 treatment 18.4279350
## 155 treatment 13.4590378
## 156 treatment  2.4246287
## 157 treatment 23.7142324
## 158 treatment 28.0552884
## 159 treatment 14.5913579
## 160 treatment  8.9751751
## 161 treatment 11.4379172
## 162 treatment 15.3653356
## 163 treatment 14.2065492
## 164 treatment 16.4341157
## 165 treatment 13.7895550
## 166 treatment  7.6918553
## 167 treatment 29.2233288
## 168 treatment 19.3561171
## 169 treatment 24.4658499
## 170 treatment 13.7283007
## 171 treatment 16.6777588
## 172 treatment 13.4056996
## 173 treatment  6.3259507
## 174 treatment 24.6013025
## 175 treatment 12.6684882
## 176 treatment 11.7784025
## 177 treatment  7.9001430
## 178 treatment 17.8023647
## 179 treatment 22.5153657
## 180 treatment 21.9680551
## 181 treatment  9.8420275
## 182 treatment 10.3889482
## 183 treatment 11.9031010
## 184 treatment 19.3273151
## 185 treatment 18.8137475
## 186 treatment 22.9455850
## 187 treatment 15.5130763
## 188 treatment 10.0521090
## 189 treatment 13.7751353
## 190 treatment 25.3168298
## 191 treatment  3.2095080
## 192 treatment 11.6981525
## 193 treatment 18.8224487
## 194 treatment  9.6480980
## 195 treatment 14.8117302
## 196 treatment 14.7454995
## 197 treatment  0.4907624
## 198 treatment 12.1243269
## 199 treatment  8.5487461
## 200 treatment 12.2985541
anova_data <- aov(Y ~ X, data = my_df)
summary_mean <- summary(anova_data)
print(summary_mean[[1]]$`Pr(>F)`)
## [1] 0.3723823        NA
library(ggplot2)
plot <- ggplot(my_df, aes(X, Y)) + geom_boxplot() + labs(x="Conditions",y="Responses")
print(plot)

For Loop Generation- ADJUSTING SD

n <- sample(1:20)
for (i in 1:length(n)) {
  print(n[i])
}
## [1] 13
## [1] 15
## [1] 3
## [1] 8
## [1] 16
## [1] 7
## [1] 19
## [1] 12
## [1] 10
## [1] 11
## [1] 14
## [1] 20
## [1] 4
## [1] 6
## [1] 18
## [1] 1
## [1] 5
## [1] 9
## [1] 2
## [1] 17
response_1 <- rnorm(n=100, mean=15, sd=n[i])
print(response_1)
##   [1]  25.2374640  11.4464042  32.3262348  24.4220357  31.3832207  17.9263973
##   [7] -12.2068403  15.1286595   4.6337382 -10.0919990   8.9024792  28.6176915
##  [13]  -0.1026458  16.7728382  38.2944569  12.8865525  42.8102369  13.9418440
##  [19]  26.1526684  60.4209448  20.6286776  15.6787167  32.0279802  12.8506768
##  [25]  14.7175275  24.8308120   3.8320759  15.5287679  19.0844446  27.1535095
##  [31]  -3.5480967  18.9834462 -23.2192683  15.9640690  -4.5702824   5.1836931
##  [37]  -5.0657621   7.4208479  30.3743163  19.6524042  37.1776339 -20.9276642
##  [43]   9.4745147  16.6027047  28.1643892 -13.3752701   4.8999002   1.7739182
##  [49]   6.7436788  22.6383341 -39.6422927   4.5547229   3.4536480  -0.2314443
##  [55]  17.4662355 -10.7226752  23.3307929   9.1636638  15.1747800  33.1436110
##  [61]  20.9356143   6.9075962  16.7866361  16.9412422   6.7867271  27.5143037
##  [67]  35.5907138  37.3473527  17.7083506 -14.8486994   7.0515184  20.1679635
##  [73]  47.2741019 -10.3811669  31.9622362  15.5286281  13.7055531   0.4040547
##  [79]  11.2341113  33.7223089  21.1200225   6.3732987  13.9999847  22.1359074
##  [85]  21.3990664  34.1177778   6.6153553   8.1093126  16.9223814   0.8032662
##  [91]  13.0333395   7.0823752  19.7655706   9.3904243  15.7784910  26.6280194
##  [97]  12.9063235  39.2396966  25.8864724  11.8898227
response_2 <- rnorm(n=100, mean=30, sd=n[i])
print(response_2)
##   [1]  21.1304037  32.2481292  23.2014494  39.0796109  13.6749800  27.8638386
##   [7]  33.4257655  -4.5585664  54.8140355   0.5214974  30.8854913   8.4009154
##  [13]  35.4982290  18.9297260  37.6131781  29.1050408  39.3282286  24.0758466
##  [19]  27.3667139  52.3430765  20.7612014  59.0771420   6.7603135  55.8817391
##  [25]  35.2430545  -2.7692554  -1.9210942  -9.3612198  43.2268129  23.2364354
##  [31]   7.5350613  -7.1429864  32.1111014  15.1277034 -14.0990944  18.2575805
##  [37]  29.9966431  23.9016035  35.5812005  42.7109729  25.1382668  35.7656206
##  [43]  35.7852039  34.6942525   6.4114486  21.7476067   0.1358449  23.8337790
##  [49]  29.9511135  -6.7281883  23.9512577  45.4788709  17.1783474  30.3470634
##  [55]  28.0665843   7.9697731  48.4061941  23.3692101  20.6802994  56.3233938
##  [61]  46.9672697  22.6135487   7.7458857  14.5245429  32.9131259   9.0504059
##  [67]  10.8220688  57.1634439   6.8043566  51.6566930  31.3878499   6.0448620
##  [73]  33.0734366   6.1259476  16.9105785   7.7806764  25.0182797  20.2748512
##  [79]  35.7530485  21.1835462  40.0939502  19.4031331  38.7890791  41.0879052
##  [85]  18.2167942  26.6674330  24.0104065  24.5559831  28.2643417  42.7103326
##  [91]  43.5059344  -2.2330694  38.6503527  49.2276430  23.4650141  37.9634689
##  [97]  44.8790519  30.8813072  41.5035190  40.9755026
response <- c(response_1, response_2)

my_df_1 <- data.frame (X = "control", Y= response_1)
print(my_df_1)
##           X           Y
## 1   control  25.2374640
## 2   control  11.4464042
## 3   control  32.3262348
## 4   control  24.4220357
## 5   control  31.3832207
## 6   control  17.9263973
## 7   control -12.2068403
## 8   control  15.1286595
## 9   control   4.6337382
## 10  control -10.0919990
## 11  control   8.9024792
## 12  control  28.6176915
## 13  control  -0.1026458
## 14  control  16.7728382
## 15  control  38.2944569
## 16  control  12.8865525
## 17  control  42.8102369
## 18  control  13.9418440
## 19  control  26.1526684
## 20  control  60.4209448
## 21  control  20.6286776
## 22  control  15.6787167
## 23  control  32.0279802
## 24  control  12.8506768
## 25  control  14.7175275
## 26  control  24.8308120
## 27  control   3.8320759
## 28  control  15.5287679
## 29  control  19.0844446
## 30  control  27.1535095
## 31  control  -3.5480967
## 32  control  18.9834462
## 33  control -23.2192683
## 34  control  15.9640690
## 35  control  -4.5702824
## 36  control   5.1836931
## 37  control  -5.0657621
## 38  control   7.4208479
## 39  control  30.3743163
## 40  control  19.6524042
## 41  control  37.1776339
## 42  control -20.9276642
## 43  control   9.4745147
## 44  control  16.6027047
## 45  control  28.1643892
## 46  control -13.3752701
## 47  control   4.8999002
## 48  control   1.7739182
## 49  control   6.7436788
## 50  control  22.6383341
## 51  control -39.6422927
## 52  control   4.5547229
## 53  control   3.4536480
## 54  control  -0.2314443
## 55  control  17.4662355
## 56  control -10.7226752
## 57  control  23.3307929
## 58  control   9.1636638
## 59  control  15.1747800
## 60  control  33.1436110
## 61  control  20.9356143
## 62  control   6.9075962
## 63  control  16.7866361
## 64  control  16.9412422
## 65  control   6.7867271
## 66  control  27.5143037
## 67  control  35.5907138
## 68  control  37.3473527
## 69  control  17.7083506
## 70  control -14.8486994
## 71  control   7.0515184
## 72  control  20.1679635
## 73  control  47.2741019
## 74  control -10.3811669
## 75  control  31.9622362
## 76  control  15.5286281
## 77  control  13.7055531
## 78  control   0.4040547
## 79  control  11.2341113
## 80  control  33.7223089
## 81  control  21.1200225
## 82  control   6.3732987
## 83  control  13.9999847
## 84  control  22.1359074
## 85  control  21.3990664
## 86  control  34.1177778
## 87  control   6.6153553
## 88  control   8.1093126
## 89  control  16.9223814
## 90  control   0.8032662
## 91  control  13.0333395
## 92  control   7.0823752
## 93  control  19.7655706
## 94  control   9.3904243
## 95  control  15.7784910
## 96  control  26.6280194
## 97  control  12.9063235
## 98  control  39.2396966
## 99  control  25.8864724
## 100 control  11.8898227
my_df_2 <- data.frame(X = "treatment", Y = response_2)
print(my_df_2)
##             X           Y
## 1   treatment  21.1304037
## 2   treatment  32.2481292
## 3   treatment  23.2014494
## 4   treatment  39.0796109
## 5   treatment  13.6749800
## 6   treatment  27.8638386
## 7   treatment  33.4257655
## 8   treatment  -4.5585664
## 9   treatment  54.8140355
## 10  treatment   0.5214974
## 11  treatment  30.8854913
## 12  treatment   8.4009154
## 13  treatment  35.4982290
## 14  treatment  18.9297260
## 15  treatment  37.6131781
## 16  treatment  29.1050408
## 17  treatment  39.3282286
## 18  treatment  24.0758466
## 19  treatment  27.3667139
## 20  treatment  52.3430765
## 21  treatment  20.7612014
## 22  treatment  59.0771420
## 23  treatment   6.7603135
## 24  treatment  55.8817391
## 25  treatment  35.2430545
## 26  treatment  -2.7692554
## 27  treatment  -1.9210942
## 28  treatment  -9.3612198
## 29  treatment  43.2268129
## 30  treatment  23.2364354
## 31  treatment   7.5350613
## 32  treatment  -7.1429864
## 33  treatment  32.1111014
## 34  treatment  15.1277034
## 35  treatment -14.0990944
## 36  treatment  18.2575805
## 37  treatment  29.9966431
## 38  treatment  23.9016035
## 39  treatment  35.5812005
## 40  treatment  42.7109729
## 41  treatment  25.1382668
## 42  treatment  35.7656206
## 43  treatment  35.7852039
## 44  treatment  34.6942525
## 45  treatment   6.4114486
## 46  treatment  21.7476067
## 47  treatment   0.1358449
## 48  treatment  23.8337790
## 49  treatment  29.9511135
## 50  treatment  -6.7281883
## 51  treatment  23.9512577
## 52  treatment  45.4788709
## 53  treatment  17.1783474
## 54  treatment  30.3470634
## 55  treatment  28.0665843
## 56  treatment   7.9697731
## 57  treatment  48.4061941
## 58  treatment  23.3692101
## 59  treatment  20.6802994
## 60  treatment  56.3233938
## 61  treatment  46.9672697
## 62  treatment  22.6135487
## 63  treatment   7.7458857
## 64  treatment  14.5245429
## 65  treatment  32.9131259
## 66  treatment   9.0504059
## 67  treatment  10.8220688
## 68  treatment  57.1634439
## 69  treatment   6.8043566
## 70  treatment  51.6566930
## 71  treatment  31.3878499
## 72  treatment   6.0448620
## 73  treatment  33.0734366
## 74  treatment   6.1259476
## 75  treatment  16.9105785
## 76  treatment   7.7806764
## 77  treatment  25.0182797
## 78  treatment  20.2748512
## 79  treatment  35.7530485
## 80  treatment  21.1835462
## 81  treatment  40.0939502
## 82  treatment  19.4031331
## 83  treatment  38.7890791
## 84  treatment  41.0879052
## 85  treatment  18.2167942
## 86  treatment  26.6674330
## 87  treatment  24.0104065
## 88  treatment  24.5559831
## 89  treatment  28.2643417
## 90  treatment  42.7103326
## 91  treatment  43.5059344
## 92  treatment  -2.2330694
## 93  treatment  38.6503527
## 94  treatment  49.2276430
## 95  treatment  23.4650141
## 96  treatment  37.9634689
## 97  treatment  44.8790519
## 98  treatment  30.8813072
## 99  treatment  41.5035190
## 100 treatment  40.9755026
my_df <- rbind(my_df_1, my_df_2)
print(my_df)
##             X           Y
## 1     control  25.2374640
## 2     control  11.4464042
## 3     control  32.3262348
## 4     control  24.4220357
## 5     control  31.3832207
## 6     control  17.9263973
## 7     control -12.2068403
## 8     control  15.1286595
## 9     control   4.6337382
## 10    control -10.0919990
## 11    control   8.9024792
## 12    control  28.6176915
## 13    control  -0.1026458
## 14    control  16.7728382
## 15    control  38.2944569
## 16    control  12.8865525
## 17    control  42.8102369
## 18    control  13.9418440
## 19    control  26.1526684
## 20    control  60.4209448
## 21    control  20.6286776
## 22    control  15.6787167
## 23    control  32.0279802
## 24    control  12.8506768
## 25    control  14.7175275
## 26    control  24.8308120
## 27    control   3.8320759
## 28    control  15.5287679
## 29    control  19.0844446
## 30    control  27.1535095
## 31    control  -3.5480967
## 32    control  18.9834462
## 33    control -23.2192683
## 34    control  15.9640690
## 35    control  -4.5702824
## 36    control   5.1836931
## 37    control  -5.0657621
## 38    control   7.4208479
## 39    control  30.3743163
## 40    control  19.6524042
## 41    control  37.1776339
## 42    control -20.9276642
## 43    control   9.4745147
## 44    control  16.6027047
## 45    control  28.1643892
## 46    control -13.3752701
## 47    control   4.8999002
## 48    control   1.7739182
## 49    control   6.7436788
## 50    control  22.6383341
## 51    control -39.6422927
## 52    control   4.5547229
## 53    control   3.4536480
## 54    control  -0.2314443
## 55    control  17.4662355
## 56    control -10.7226752
## 57    control  23.3307929
## 58    control   9.1636638
## 59    control  15.1747800
## 60    control  33.1436110
## 61    control  20.9356143
## 62    control   6.9075962
## 63    control  16.7866361
## 64    control  16.9412422
## 65    control   6.7867271
## 66    control  27.5143037
## 67    control  35.5907138
## 68    control  37.3473527
## 69    control  17.7083506
## 70    control -14.8486994
## 71    control   7.0515184
## 72    control  20.1679635
## 73    control  47.2741019
## 74    control -10.3811669
## 75    control  31.9622362
## 76    control  15.5286281
## 77    control  13.7055531
## 78    control   0.4040547
## 79    control  11.2341113
## 80    control  33.7223089
## 81    control  21.1200225
## 82    control   6.3732987
## 83    control  13.9999847
## 84    control  22.1359074
## 85    control  21.3990664
## 86    control  34.1177778
## 87    control   6.6153553
## 88    control   8.1093126
## 89    control  16.9223814
## 90    control   0.8032662
## 91    control  13.0333395
## 92    control   7.0823752
## 93    control  19.7655706
## 94    control   9.3904243
## 95    control  15.7784910
## 96    control  26.6280194
## 97    control  12.9063235
## 98    control  39.2396966
## 99    control  25.8864724
## 100   control  11.8898227
## 101 treatment  21.1304037
## 102 treatment  32.2481292
## 103 treatment  23.2014494
## 104 treatment  39.0796109
## 105 treatment  13.6749800
## 106 treatment  27.8638386
## 107 treatment  33.4257655
## 108 treatment  -4.5585664
## 109 treatment  54.8140355
## 110 treatment   0.5214974
## 111 treatment  30.8854913
## 112 treatment   8.4009154
## 113 treatment  35.4982290
## 114 treatment  18.9297260
## 115 treatment  37.6131781
## 116 treatment  29.1050408
## 117 treatment  39.3282286
## 118 treatment  24.0758466
## 119 treatment  27.3667139
## 120 treatment  52.3430765
## 121 treatment  20.7612014
## 122 treatment  59.0771420
## 123 treatment   6.7603135
## 124 treatment  55.8817391
## 125 treatment  35.2430545
## 126 treatment  -2.7692554
## 127 treatment  -1.9210942
## 128 treatment  -9.3612198
## 129 treatment  43.2268129
## 130 treatment  23.2364354
## 131 treatment   7.5350613
## 132 treatment  -7.1429864
## 133 treatment  32.1111014
## 134 treatment  15.1277034
## 135 treatment -14.0990944
## 136 treatment  18.2575805
## 137 treatment  29.9966431
## 138 treatment  23.9016035
## 139 treatment  35.5812005
## 140 treatment  42.7109729
## 141 treatment  25.1382668
## 142 treatment  35.7656206
## 143 treatment  35.7852039
## 144 treatment  34.6942525
## 145 treatment   6.4114486
## 146 treatment  21.7476067
## 147 treatment   0.1358449
## 148 treatment  23.8337790
## 149 treatment  29.9511135
## 150 treatment  -6.7281883
## 151 treatment  23.9512577
## 152 treatment  45.4788709
## 153 treatment  17.1783474
## 154 treatment  30.3470634
## 155 treatment  28.0665843
## 156 treatment   7.9697731
## 157 treatment  48.4061941
## 158 treatment  23.3692101
## 159 treatment  20.6802994
## 160 treatment  56.3233938
## 161 treatment  46.9672697
## 162 treatment  22.6135487
## 163 treatment   7.7458857
## 164 treatment  14.5245429
## 165 treatment  32.9131259
## 166 treatment   9.0504059
## 167 treatment  10.8220688
## 168 treatment  57.1634439
## 169 treatment   6.8043566
## 170 treatment  51.6566930
## 171 treatment  31.3878499
## 172 treatment   6.0448620
## 173 treatment  33.0734366
## 174 treatment   6.1259476
## 175 treatment  16.9105785
## 176 treatment   7.7806764
## 177 treatment  25.0182797
## 178 treatment  20.2748512
## 179 treatment  35.7530485
## 180 treatment  21.1835462
## 181 treatment  40.0939502
## 182 treatment  19.4031331
## 183 treatment  38.7890791
## 184 treatment  41.0879052
## 185 treatment  18.2167942
## 186 treatment  26.6674330
## 187 treatment  24.0104065
## 188 treatment  24.5559831
## 189 treatment  28.2643417
## 190 treatment  42.7103326
## 191 treatment  43.5059344
## 192 treatment  -2.2330694
## 193 treatment  38.6503527
## 194 treatment  49.2276430
## 195 treatment  23.4650141
## 196 treatment  37.9634689
## 197 treatment  44.8790519
## 198 treatment  30.8813072
## 199 treatment  41.5035190
## 200 treatment  40.9755026
anova_data <- aov(Y ~ X, data = my_df)
summary_sd <- summary(anova_data)
print(summary_sd[[1]]$`Pr(>F)`)
## [1] 1.742923e-06           NA
library(ggplot2)
plot <- ggplot(my_df, aes(X, Y)) + geom_boxplot() + labs(x="Conditions",y="Responses")
print(plot)

Comparing p-values

print(summary[[1]]$`Pr(>F)`)
## [1] 4.32457e-47          NA
print(summary_sample[[1]]$`Pr(>F)`)
## [1] 2.678334e-148            NA
print(summary_mean[[1]]$`Pr(>F)`)
## [1] 0.3723823        NA
print(summary_sd[[1]]$`Pr(>F)`)
## [1] 1.742923e-06           NA

Discussion on p-values

  1. When changing the sample size, the p-value became more significant.
  2. When changing the mean, the p-value became insignificant.
  3. When changing the standard deviation, the p-value became more significant.